DOI QR코드

DOI QR Code

Biomechanical Characteristics of Cervical Spine After Total Disc Replacement

인공 추간판 치환술 후 경추의 생체역학적 특성

  • 박원만 (경희대학교 대학원 기계공학과) ;
  • 주증우 (경희대학교 테크노공학대학) ;
  • 김경수 (경기대학교 수학과) ;
  • 이기석 (공주대학교 기계자동차공학부) ;
  • 김윤혁 (경희대학교 테크노공학대학)
  • Published : 2009.07.01

Abstract

We have analyzed the biomechanical characteristics of cervical spine after total disc replacement using finite element analysis. A finite element model of C2-C7 spinal motion segment was developed and validated by other experimental studies. Two types of artificial discs, semi-constraint and un-constraint, were inserted at C6-C7 segments. Inferior plane of C7 vertebra was fixed and 1Nm of moment were applied on superior plane of C2 vertebra with 50N of compressive load along follower load direction. Mobility of the cervical spine in which each artificial disc inserted was higher than that of intact one in all loading conditions. Also, high mobility at the surgical level after total disc replacement could lead higher facet joint force and ligaments axial stresses. The results of present study could be used to evaluate surgical option and validate the biomechanical characteristics of the implant in total disc replacement in cervical spine.

Keywords

Artificial Disc;Cervical Spine;Total Disc Replacement;Finite Element Analysis

References

  1. Kweon, S. Y., Kim, H. T., and Ha, S. K., 2002, 'Optimal Design of Synthetic Intervertebral Disc Prosthesis Considering Nonlinear Mechanical Behavior,' Trans. of the KSME (A), Vol. 26, No. 2, pp. 234-242 https://doi.org/10.3795/KSME-A.2002.26.2.234
  2. Fabio, G., Chiara M. B., Manuela, T. R., Maurizio, F., and Roberto, A., 2008, 'Cervical Spine Biomechanics Following Implantation of Disc Prosthesis,' Med. Eng. & Phys., in process
  3. Dmitriev, A. E., Cunningham, B. W., Hu, N., Sell, G., Vigna, F., and McAfee, P. C., 2005, 'Adjacent Level Intradiscal Pressure and Segmental Kinematics Following a Cervical Total Disc Arthroplasty : An In Vitro Human Cadaveric Model,' Spine, Vol. 30, No. 10, pp. 1165-1172 https://doi.org/10.1097/01.brs.0000162441.23824.95
  4. Snyder, J. T., Tzermiadianos, M. N., Ghanayem, A. J., Voronov, L. I., Rinella, A., Dooris, A., Carandang, G., Renner, S. M., Havey, R. M., and Patwardhan, A. G., 2007, 'Effect of Uncovertebral Joint Excision on the Motion Response of the Cervical Spine after Total Disc Replacement,' Spine, Vol. 32, No. 26, pp. 2965-2969 https://doi.org/10.1097/BRS.0b013e31815cd482
  5. Kumaresan, S., Yoganandan, N., Pintar, F. A., and Maiman, D. J., 1999, 'Finite Element Modeling of the Cervical Spine : Role of Intervertebral Disc under Axial and Eccentric Loads,' Med. Eng. & Phys., Vol. 21, No. 10, pp. 689-700 https://doi.org/10.1016/S1350-4533(00)00002-3
  6. Zhang, Q. H., Teo, E. C., Ng, H. W., and Lee, V. S., 2006, 'Finite Element Analysis of Moment-Rotation Relationships for Human Cervical Spine,' J. Biomech., Vol. 39, No. 1, pp. 189-193 https://doi.org/10.1016/j.jbiomech.2004.10.029
  7. Kumaresan, S., Yoganandan, N., and Pintara, F. A., 1998, 'Finite Element Modeling Approaches of Human Cervical Spine Facet Joint Capsule,' J. Biomech., Vol. 31, No. 4, pp. 371-376 https://doi.org/10.1016/S0021-9290(98)00008-6
  8. Goel, V. K., and Clausen, J. D., 1998, 'Prediction of Load Sharing Among Spinal Components of a C5-C6 Motion Segment Using the Finite Element Approach,' Spine, Vol. 23, No. 6, pp. 684-691 https://doi.org/10.1097/00007632-199803150-00008
  9. Ng, H. W., Teo, E. C., and Lee, V. S., 2004, 'Statistical Factorial Analysis on the Material Property Sensitivity of the Mechanical Responses of the C4-C6 under Compression, Anterior and Posterior Shear,' J. Biomech., Vol. 37, No. 5, pp. 771-777 https://doi.org/10.1016/j.jbiomech.2003.09.025
  10. Kubo, S., Goel, V. K., Yang, S. J., and Tajima, N., 'Biomechanical Evaluation of Cervical Double-Door Laminoplasty Using Hydroxyapatite Spacer,' Spine, Vol. 28, No. 3, pp. 227-234 https://doi.org/10.1097/00007632-200302010-00005
  11. Pelker, R. R., Duranceau, J. S., and Panjabi, M. M., 1991, 'Cervical Spine Stabilization. A Three-dimensional, Biomechanical Evaluation of Rotational Stability, Strength, and Failure Mechanisms,' Spine, Vol. 16, No. 2, pp. 117-122
  12. Ng, H. W., Teo. E. C., and Zhang, Q. H., 2004, 'Biomechanical Effects of C2-C7 Intersegmental Stability due to Laminectomy with Unilateral and Bilateral Facetectomy,' Spine, Vol. 29, No. 16, pp. 1737-1745 https://doi.org/10.1097/01.BRS.0000134574.36487.EB
  13. del Palomar, A. P., Calvo, B., and Doblare, M., 2008, 'An Accurate Finite Element Model of the Cervical Spine under Quasi-static Loading,' J. Biomech., Vol. 41, No. 3, pp. 523-531 https://doi.org/10.1016/j.jbiomech.2007.10.012
  14. Chang, U. K., Kim, D. H., Lee, M. C., Willenberg, R., Kim, S. H., and Lim, J., 2007, 'Range of Motion Change after Cervical Arthroplasty with ProDisc-C and Prestige Artificial Discs Compared with Anterior Cervical Discectomy and Fusion,' J. Neurosurg Spine, Vol. 7, No. 1, pp. 40-46 https://doi.org/10.3171/SPI-07/07/040
  15. Chang, U. K., Kim, D. H., Lee, M. C., Willenberg, R., Kim, S. H., and Lim, J., 2007, 'Changes in Adjacent-level Disc Pressure and Facet Joint Force after Cervical Arthroplasty Compared with Cervical Discectomy and Fusion,' J. Neurosurg. Spine, Vol. 7, No. 1, pp. 33-39 https://doi.org/10.3171/SPI-07/07/033
  16. Bass, C. R., Lucas, S. R., Salzar, R. S., Oyen, M. L., Planchak, C., Shender, B. S., and Paskoff G., 2007, 'Failure Properties of Cervical Spinal Ligaments under Fast Strain Rate Deformations,' Spine, Vol. 32, No. 1, pp. E7-E13 https://doi.org/10.1097/01.brs.0000251058.53905.eb
  17. Rousseau, M. A., Bonnet, X., and Skalli, W., 2005, 'Influence of the Geometry of a Ball-and-socket Intervertebral Prosthesis at the Cervical Spine,' Spine, Vol. 33, No. 1, pp. E10-E14 https://doi.org/10.1097/BRS.0b013e31815e62ea
  18. Goffin, J., van Calenbergh, F., van Loon, J., Casey, A., Kehr, P., Liebig, K., Lind, B., Logroscino, C., Sgrambiglia, R., and Pointillart, V., 2008, 'Intermediate Follow-up after Treatment of Degenerative Disc Disease with the Bryan Cervical Disc Prosthesis: Single-Level and Bi-Level,' Spine, Vol. 28, No. 24, pp. 2673-2678 https://doi.org/10.1097/01.BRS.0000099392.90849.AA
  19. Teo, E. C,, Yang, K., Fuss, F. K., Lee, K. K., Qiu, T. X., and Ng, H. W., 2004, 'Effects of Cervical Cages on Load Distribution of Cancellous Core,' J. Spinal Disord Tech., Vol. 17, No. 3, pp. 226-231 https://doi.org/10.1097/00024720-200406000-00010
  20. Panjabi, M. M., Crisco, J. J., Vasavada, A., Oda, T., Cholewicki, J., Nibu, K., and Shin, E., 2001, 'Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load Displacement Curves,' Spine, Vol. 26, No. 24, pp. 2692-2700 https://doi.org/10.1097/00007632-200112150-00012
  21. Rohlmann, A., Zander, T., and Bergmann, G., 2005, 'Effect of Total Disc Replacement with ProDisc on Intersegmental Rotation of the Lumbar Spine,' Spine, Vol. 30, No. 7, pp. 738-743 https://doi.org/10.1097/01.brs.0000157413.72276.c4

Cited by

  1. Effect of the Radius of Curvature on the Contact Pressure Applied to the Endplate of the Sliding Core in an Artificial Intervertebral Disc vol.36, pp.1, 2012, https://doi.org/10.3795/KSME-A.2012.36.1.029