DOI QR코드

DOI QR Code

The Comparison of Biomechanical Changes between Spinous Process Osteotomy and Conventional Laminectomy

극돌기 절골술과 추궁판 절제술에 대한 생체역학적 비교

  • 강경탁 (연세대학교 대학원 기계공학과) ;
  • 전흥재 (연세대학교 기계공학과) ;
  • 손주현 (연세대학교 대학원 기계공학과) ;
  • 김호중 (연세대학교 의과대학 정형외과학 교실) ;
  • 문성환 (연세대학교 의과대학 정형외과학 교실) ;
  • 이환모 (연세대학교 의과대학 정형외과학 교실) ;
  • 김가연 (연세대학교 대학원 기계공학과)
  • Published : 2009.07.01

Abstract

Previous studies have introduced the technique of spinous process osteotomy to decompress spinal stenosis, a procedure which aims to afford excellent visualization while minimizing destruction of tissues not directly involved in the pathologic process. However, biomechanically it has not been investigated whether the sacrifice of posterior spinous process might have potential risk of spinal instability or not, even though supra-spinous and inter-spinous ligaments are preserved. Therefore the aim of this study is to evaluate the biomechanical properties after spinous process osteotomy, using finite element analysis. The model of spinous process osteotomy exhibited no significant increase in disc stress or change in segmental range of motion. It is due to the fact that the instability of lumbar spine has been maintained by the two-types of ligaments compared with the prior surgical technique. Therefore, according to the finite element result on this study, this osotetomy was considered to be a clinically safe surgical procedure and could not cause the instability of the lumbar spine.

Keywords

Finite Element Analysis;Osoteomic;Spine;Spinous

References

  1. Park, S. Y., Kim. H. J., Moon, S. Y. and Lee, H. M., 2008, 'Decompression for Lumbar Spinal Stenosis a Degenerative Spondylolisthesis Using Spinous Process Osteotomy Technique,' ISSLS, p. 265
  2. Kim, Y. and Vanderby, R., 2000, 'Finite Element Analysis of Interbody Cages in a Human Lumbar Spine,' Computer Methods in Biomechanics and Biomedical Engineering, Vol. 3, pp. 257-272 https://doi.org/10.1080/10255840008915270
  3. Palm, W. J., Rosenberg, W. S. and Keaveny, T. M, 2002, 'Load Transfer Mechanisms in Cylindrical Interbody Cage Constructs,' Spine, Vol. 27, No. 19, pp. 2101-2107 https://doi.org/10.1097/00007632-200210010-00005
  4. Shirazi-Adl, S. A., Shrivastava, S. C. and Ahmed, A. M., 1984, 'Stress Analysis of the Lumbar Disc-Body Unit in Compression. a Three-Dimensional Nonlinear Finite Element Study,' Spine, Vol. 9, No. 2, pp. 120-134 https://doi.org/10.1097/00007632-198403000-00003
  5. Guan, Y., Yoganandan, N., Zhang, J., Pintar, F., Cusick, J., Wolfla, C. E. and Maiman, D. J., 2006, 'Validation of a Clinical Finite Element Model of the Human Lumbosacral Spine,' Medical and Biological Engineering and Computing, Vol. 44, No. 8, pp. 633-641 https://doi.org/10.1007/s11517-006-0066-9
  6. Wagner, D. and Lotz, J., 2004, 'Theoretical Model and Experimental Results for the Nonlinear Elastic Behavior of Human Annulus Fibrosus,' Journal of Orthopaedic Research, Vol. 22, No. 4, pp. 901-909 https://doi.org/10.1016/j.orthres.2003.12.012
  7. Pintar, F. A., Yoganandan, N., Myeres, T., Elhagediab, A. and Sances Jr, A., 1992, 'Biomechanical Properties of Human Lumbar Spine Ligaments,' Journal of Biomechanics, Vol. 25, No. 11, pp. 1351-1356 https://doi.org/10.1016/0021-9290(92)90290-H
  8. Yamamoto, I., Panjabi, M. M., Crisco, T. and Oxland, T., 1989, 'Three-Dimensional Movement of the Whole Lumbar Spine and Lumbosacral Joint,' Spine, Vol. 14, pp. 1256-1260 https://doi.org/10.1097/00007632-198911000-00020
  9. Chen, C. S., Cheng, C. K., Liu, C. L. and Lo, W. H., 2001, 'Stress Analysis of the Disc Adjacent to Interbody Fusion in Lumbar Spine,' Medical Engineering & Physics, Vol. 23, No. 7, pp. 483-489 https://doi.org/10.1016/S1350-4533(01)00076-5
  10. Cardoso, M. J., Dmitriev, A. E., Helgeson, M., Lehman, R. A., Kuklo, T. R. and Rosner, M. K., 2008, 'Does Superior-Segment Facet Violation or Laminectomy Destabilize the Adjacent Level in Lumbar Transpedicular Fixation? An in Vitro Human Cadaveric Assessment,' Spine, Vol. 33, No. 26, pp. 2868 https://doi.org/10.1097/BRS.0b013e31818c63d3
  11. Yoganandan, N., Kumaresan, S., Voo, L. and Pintar, F., 1996, 'Finite Element Applications in Human Cervical Spine Modeling,' Spine, Vol. 21, No. 15, pp. 1824-1834 https://doi.org/10.1097/00007632-199608010-00022
  12. Yoganandan, N., Kumaresan, S., Voo, L. and Pintar, F. A., 1997, 'Finite Element Model of the Human Lower Cervical Spine: Parametric Analysis of the C4-C6 Unit,' Journal of Biomechanical Engineering, Vol. 119, No. 1, pp. 87-92 https://doi.org/10.1115/1.2796070
  13. Yoganandan, N., Kumaresan, S. and Pintar, F. A., 2001, 'Biomechanics of the Cervical Spine. Part 2. Cervical Spine Soft Tissue Responses and Biomechanical Modeling,' Clinical Biomechanics, Vol. 16, No. 1, pp. 1-27 https://doi.org/10.1016/S0268-0033(00)00074-7
  14. Goel, V. K., Kong, W. Z., Han, J. S., Weinstein, J. N. and Gilbertson, L. G., 1993, 'A Combined Finite Element and Optimization Investigation of Lumbar Spine Mechanics with and Without Muscles,' Spine, Vol. 18, pp. 1531-1541 https://doi.org/10.1097/00007632-199318110-00019
  15. Ivanov, A., Faizan, A., Sairyo, K., Ebranheim, N., Biyani, A. and Goel, V. K., 2007, 'Minimally Invasive Decompression for Lumbar Spinal Canal Stenosis in Younger Age Patients Could Lead to Higher Stresses in the Remaining Neural Arch-A Finite Element Investigation,' Minimally Invasive Neurosurgery, Vol. 50, No. 1, pp. 18-22 https://doi.org/10.1055/s-2006-947996
  16. Rosen, C., Rothman, S., Zigler, J. and Capen, D., 1991, 'Lumbar Facet Fracture as a Possible Source of Pain After Lumbar Laminectomy,' Spine, Vol. 16, pp. 234-238 https://doi.org/10.1097/00007632-199106001-00011
  17. Weiner, B. K., Fraser, R. D. and Peterson, M., 1999, 'Spinous Process Osteotomies to Facilitate Lumbar Decompressive Surgery,' Spine, Vol. 24, No. 1, pp. 62-66 https://doi.org/10.1097/00007632-199901010-00015
  18. Goel, V. K., Grauer, J. N., Patel, T., Biyani, A., Sairyo, K., Vishnubhotla, S., Matyas, A., Cowgill, I., Shaw, M., Long, R., Dick, D., Panjabi, M. M. and Serhan, H., 2005, 'Effects of Charite Artificial Disc on the Implanted and Adjacent Spinal Segments Mechanics Using a Hybrid Testing Protocol,' Spine, Vol. 30, No. 24, pp. 2755-2764 https://doi.org/10.1097/01.brs.0000195897.17277.67
  19. Goel, V. K., Kim, Y. E., Lim, T. H. and Weinstein, J. N., 1988, 'An Analytical Investigation of the Mechanics of Spinal Instrumentation,' Spine, Vol. 13, No. 9, pp. 1003-1011 https://doi.org/10.1097/00007632-198809000-00007
  20. Shirazi-Adl, A., 1994, 'Biomechanics of the Lumbar Spine in Sagittal/Lateral Moments,' Spine, Vol. 19, No. 21, pp. 2407-2414 https://doi.org/10.1097/00007632-199411000-00007
  21. Yoganandan, N., Myklebust, J. B., Ray, G. and Sances, A. Jr, 1987, 'Mathematical and Finite Element Analysis of Spine Injuries,' Critical Reviews in Biomedical Engineering, Vol. 15, No. 1, pp. 29-93

Cited by

  1. Mechanical Evaluation of Posterior Dynamic Omega-wire Stabilization System vol.36, pp.11, 2012, https://doi.org/10.3795/KSME-B.2012.36.11.1099