An estimator of the mean of the squared functions for a nonparametric regression

  • Published : 2009.05.31

Abstract

So far in a nonparametric regression model one of the interesting problems is estimating the error variance. In this paper we propose an estimator of the mean of the squared functions which is the numerator of SNR (Signal to Noise Ratio). To estimate SNR, the mean of the squared function should be firstly estimated. Our focus is on estimating the amplitude, that is the mean of the squared functions, in a nonparametric regression using a simple linear regression model with the quadratic form of observations as the dependent variable and the function of a lag as the regressor. Our method can be extended to nonparametric regression models with multivariate functions on unequally spaced design points or clustered designed points.

References

  1. Carter, C. K. and Eagleson, G. K. (1992). A comparison of variance estimators in nonparametric regression. Journal of the Royal Statistical Society: Series B, 54, 773-780.
  2. Dette, H., Munk, A. and Wagner, T. (1998). Estimating the variance in nonparametric regression-What is a reasonable choice- Journal of the Royal Statistical Society: Series B, 60, 751-764. https://doi.org/10.1111/1467-9868.00152
  3. Hall, P. and Carroll, R. J. (1989). Variance function estimation in regression: The effect of estimating the mean. Journal of the Royal Statistical Society: Series B, 51, 3-14.
  4. Hall, P. and Marron, J. S. (1990). On variance estimation in nonparametric regression. Biometrika, 77, 415-419. https://doi.org/10.1093/biomet/77.2.415
  5. Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. Biometrika, 73, 625-633. https://doi.org/10.1093/biomet/73.3.625
  6. Neumann, M. H. (1994). Fully data-driven nonparametric variance estimators. Statistics, 25, 189-212. https://doi.org/10.1080/02331889408802445
  7. Park, Chun Gun (2008). A note on a Bayesian approach to the choice of wavelet basis functions at each resolution level. Journal of Korean Data & Information Science Society, 19, 1465-1476.
  8. Park, Chun Gun, Yeong-Hwa Kim and Wan-Youn Yang (2004). Determinacy on a maximum resolution in wavelet series. Journal of Korean Data & Information Science Society, 15, 467-476.
  9. Rice, J. A. (1984). Bandwidth choice for nonparametric regression. Annals of statistics, 12, 1215-1220. https://doi.org/10.1214/aos/1176346788
  10. Seifert, B., Gasser, T. and Wolf, A. (1993). Nonparametric estimation of residual variance revisited. Biometrika, 80, 373-83. https://doi.org/10.1093/biomet/80.2.373
  11. Tong, T. andWang, Y. (2005). Estimating residual variance in nonparametric regression using least squares. Biometrika, 92, 821-830. https://doi.org/10.1093/biomet/92.4.821
  12. Wahba, G. (1990). Spline models for observational data, CBMS-NSF Regional Conference Series in Applied Mathematics, 59, Philadelphia, PA: SIAM.