Pd(II) Catalyzed Copolymerization of Styrene and CO in Quaternary Ammonium Ionic Liquids

  • Tian, Jing (School of Chemical Engineering and Technology, TianJin University) ;
  • Guo, Jin-Tang (School of Chemical Engineering and Technology, TianJin University) ;
  • Zhu, Cheng-Cai (School of Chemical Engineering and Technology, TianJin University) ;
  • Zhang, Xin (School of Chemical Engineering and Technology, TianJin University) ;
  • Xu, Yong-Shen (School of Chemical Engineering and Technology, TianJin University)
  • Published : 2009.03.25


Poly(1-oxo-2-phenyltrimethylene) was synthesized by palladium-catalyzed copolymerization of styrene and carbon monoxide in quaternary ammonium ionic liquids. The $[Pd(bipy)_2][PF_6]_2$ compound had relatively more catalytic activity than $[Pd(bipy)_2][BF_4]_2$ in ionic liquids. The catalytic activity of palladium (II) composite catalyst was superior to the catalyst formed in situ from palladium acetate, 2,2-bipyridyl, and $X^-$ ($X^-=PF_6^-$, $BF_4^-$) in ionic liquids. The effects of the volume of ionic liquids, reaction time and benzoquinone content on the copolymerization were also described.


  1. J. Durand and B. Milani, Chem. Rev., 250, 542 (2006)
  2. E. Drent and P. H. M. Budzelaar, Chem. Rev., 96, 663 (1996) https://doi.org/10.1021/cr940282j
  3. G. P. Belov and E. V. Novikova, Russian Chem. Rev., 73, 267 (2004) https://doi.org/10.1070/RC2004v073n03ABEH000840
  4. W. C. J. Zuiderduin, D. S. Homminga, J. Huetink, and R. J. Gaymans, Polymer, 46, 1921 (2005) https://doi.org/10.1016/j.polymer.2004.12.032
  5. J. Durand, A. Scarel, B. Milani, and R. Seraglia, et al., Chimica Acta, 89, 1752 (2006) https://doi.org/10.1002/hlca.200690172
  6. P. Kubisa, Prog. Polym. Sci., 29, 3 (2004) https://doi.org/10.1016/j.progpolymsci.2003.10.002
  7. C. G. Blanco, D. C. Banciella, and M. D. G. Azpiroz, J. Mol. Catal. A-Chem., 253, 203 (2006) https://doi.org/10.1016/j.molcata.2006.03.037
  8. B. Pugin, M. Studer, E. Kuesters, G. Sedelmeier, and X. Feng, Advanced Synthesis & Catalysis, 346, 1481 (2004) https://doi.org/10.1002/adsc.200404113
  9. A. Riisager, R. Fehrmann, M. Haumann, B. S. K. Gorle, and P. Wasserscheid, Ind. Eng. Chem. Res., 44, 9853 (2005) https://doi.org/10.1021/ie050629g
  10. A. Balazs, C. Benedek, and S. Toros, J. Mol. Catal. A-Chem., 244, 105 (2006) https://doi.org/10.1016/j.molcata.2005.08.048
  11. A. J. Carmichael, D. M. Haddleton, S. A. F. Bon, and K. R. Seddon, Chem. Commun., 14, 1237 (2000)
  12. P. Wasserscheid, C. Hilgers, C. M. Gordon, M. J. Muldoon, and I. R. Dunkin, Chem. Commun., 13, 1186 (2001)
  13. C. Hardacre, J. D. Holbrey, S. P. Katdare, and K. R. Seddon, Green Chem., 4, 143 (2002) https://doi.org/10.1039/b111157b
  14. H.-J. Wang, L.-L. Wang, W.-S. Lam, W.-Y. Yu, and Albert S. C. Chan, Tetrahedron, 17, 7 (2006) https://doi.org/10.1016/j.tetasy.2005.11.030
  15. B. Milani, A. Anzilutti, L. Vicentini, A. Sessanta o Santi, E. Zangrando, S. Geremia, and G. Mestroni, Organometallics, 16, 5064 (1997) https://doi.org/10.1021/om9703954
  16. U. Domanska and R Bogel- ukasik, J. Phys. Chem. B, 109, 12124 (2005) https://doi.org/10.1021/jp058015c
  17. E. Drent and P. H. M. Budzelaar, J. Organomet. Chem., 593, 211 (2000) https://doi.org/10.1016/S0022-328X(99)00554-9
  18. A. Vavasori, G. Cavinato, and L. Toniolo, J. Mol. Catal. A-Chem., 191, 209 (2003) https://doi.org/10.1016/S1381-1169(02)00174-7