A Study on Development of the Measure of Effects for Pallets Standardization

김 현 승
(서울시립대학교 교통공학과 석사과정)

도 화 용
(서울시립대학교 도시과학연구원 석사과정)

박 동 주
(서울시립대학교 교통공학과 부교수)

최 창 호
(전남대학교 경상학부 조교수)

Key Words: 물류표준화, 파렛트, 효과평가척도, 스윙기법, 평점법
Logistics Standardization, Pallet, Measure of Effects, Swing Weighting Method, Rating Scale Method

요 약

물류표준화는 표준화에 따른 비용절감 및 효율성 제고 등으로 인해 산업 부문뿐만 아니라 국민경제에 미치는 영향이 커진 것으로 예상된다. 따라서 세계 각국은 물류부문의 글로벌 표준화를 선도하기 위하여 국가적으로 다양한 노력을 기울이고 있으나 우리나라는 아직까지 물류 분야의 표준화가 본격적으로 추진되고 있지 않은 실정이다. 또한 물류표준화의 효과를 측정하는 연구가 미흡한 실정이며, 특히 물류표준화의 근간이 되는 파렛트 표준화의 효과 평가 및 평가척도 개발에 대한 연구는 현재까지 전무한 실정이다.

물류표준화가 시행되기 위해서는 우선 표준화의 필요성 및 그에 따른 효과를 명확히 제시해야 할 필요가 있다. 이를 위해 물류표준화의 효과 측정 및 평가 방법을 명확하게 하여 물류표준화의 효과를 정량적으로 측정하여야 한다. 따라서 본 연구에서는 일반수송 중심의 물류표준화의 근간이 되는 일반수송용 파렛트 표준화의 효과평가방안에 대해 살펴보고, 표준화에 따른 효과를 평가하기 위해 효과평가척도(MOE)를 선정하였다. 효과평가척도 설정을 위해 우선 예비효과평가척도를 선정하였는데, 그 결과 타사사례, 수·배송 비용, 장고보관비용, 당고 자동화율, 상·하역 소요인력 등 12개의척도가 선정되었다. 이와 같이 선정된 예비효과평가척도를 이용하여 전문가 평가와 업계 대상 응답가능성 조사 결과를 바탕으로 최종 효과평가척도를 설정한 결과, 차량/도리 적재율, 장고보관 효율, 상·하역 시간, 포장비용 비중, 일반수송 비용이 파렛트 표준화에 따른 효과평가를 위한 점수로 선정되었다.

It is expected that logistics standardization have a great effect on industry and national economy due to cost saving and improving efficiency. Therefore all countries of the world make a strenuous effort to take a lead of logistics standardization. Despite such efforts of every country, our country remained a lukewarm attitude about logistics standardization. Especially, our country remained a lukewarm attitude about logistics standardization effect quantify.

We have to suggest the necessity of standardization and the effect for carrying out logistics standard. So, this study performed literature review and case study for development of effect valuation method. Also, this study developed effect valuation standard for quantifiable standardization effect and drew the effect valuation standard model. First, the measure of preliminary effectiveness was chosen for MOE selection. As a results, vehicle load ratio, delivery cost, keeping space efficiency, warehouse automation ratio, etc. were selected. Then, vehicle/truck load ratio, warehouse keeping efficiency, up·unloading hour, packaging cost, consistency transportation ratio were chosen for MOE of pallet standardization.
1. 국내 선행연구 고찰

건설교통부·한국건설교통기술평가원(2004)은 물류
표준화의 경제적 효과를 분석하였는데, 이 연구에서는
표준 파렛트의 사용 수준을 물류표준화의 대리변수로 사
용하고 있으므로 표준 파렛트 사용에 따른 경제적 효과
을 추정하고 있다. 구체적으로는 실험군을 통해 물류
표준화의 효과를 추정하고 있으며, 물류표준화 실천에
따른 물류비 변화를 추정하기 위해 물류표준화의 정도를
사례별로 구분하였다. 또한 실험군을 통하여 표준화로
인한 경비의 부문별 물류비 변화를 산출하고 이를 통
해 국가 물류비 감축을 추정하였다.

이순철 등(2005)은 표준 파렛트의 사용비용을 물류
표준화의 기준 정도로 선정하여 물류표준화가 기업물류
비에 미치는 영향을 분석하였다. 실험군을 통해 각 기
업이 물류표준화를 도입하기 전과 후를 비교분석하여 각
기업별·부문별 표준화의 효과를 분석하였다.

권안식 등(2007)은 한·중·일 파렛트 표준화로 인
한 기대효과를 경제 및 무역 측면에서의 효과와 물류업
및 환경측면에서의 효과로 구분하여 살펴보았다. 우선,
경제 및 무역 측면에서의 효과는 다음과 같다. 한·중·일
3국의 무역을 monitor하는 화물무게 기준으로, 인도-유럽
파렛트 소요 비용을 파렛트 표준화로 인한 3국 파렛트
공동요인시스템을 구축한 경우의 비교효과와 3국 파렛트
공동요인시스템을 통한 3국 무역량 증대 및 경쟁력 강화효
과로 나누어 살펴보았다. 다음으로 물류업 및 환경측면
에서의 효과는 환경물류 측면에서 파렛트 표준화의 중요
성을 중심으로 제시하고 있다.

박용남 등(1999)은 통계적 가설 검증의 방법을 사용
하여 물류기기의 표준화가 기업성과에 미치는 영향에 대
해 연구하였다. 가설을 검증하기 위해 채집한 데이터의
한 신뢰성 검토 세부항목과 제품 안전성, 작업 효
율 항상, 사용자유용도 확대, 비용효율 증가, 수익연
을 항상, 간편성도 증가, 수익연을 항상, 간편성도 증가, 간편성도
가로 다양한 데이터를 활용하여 통계적 검증을 수행하였으며, 결과
가능성 검토 세부항목과 제품 안전성, 작업 효
율 항상, 사용자유용도 확대, 비용효율 증가, 수익연
을 항상, 간편성도 증가, 수익연을 항상, 간편성도 증가, 간편성도
통해 물류기기 표준화가 물류비용 절감에 미치는 영향을 분석하였다.

2. 국외 선형연구 고찰

Sd + D(2002)는 파렛트 표준화에 의한 물류표준화의 장점과 효과분석을 시도하였다. 이 연구에서 파렛트 표준화에 대한 분석을 위해 고려해야 할 사항으로 장기적인 시장 전망, 공급망의 전반적인 사양, 단위화와 효율성 간의 적용성, 제품과 파렛트, 컨테이너 및 차량간의 관계 등을 언급하고 있다. 또한 물류의 흐름과 파렛트의 개념적 관계를 (그림 1)과 같이 설명하고 있다.

또한 호주에서는 <그림 2>와 같이 표준 파렛트의 효과 분석을 실시하였는데, 자국 내 파렛트 표준과 ISO 파렛트 표준 사용에 따른 자국 내 물류망의 변화를 중심으로 분석하였다.

3. 선형연구와의 차별성

앞서 살펴본 바와 같이 물류표준화의 효과 추정과 관련된 선형연구는 매우 미흡한 실정이며, 특히 물류표준화의 근간이 되는 파렛트의 효과평가제도 개발하는 연구는 거의 전무한 실정이다.

기존 연구에서는 효과평가 향후 전문가들 간의 지식을 물류활동 분야와 직접적으로 관련된 효과들뿐 아니라 이를 통해 간접적으로 발생 가능한 효과까지도 얻고 있다. 즉, 효과를 직접적 효과와 간접적 효과로 나누고 표준화에 따른 효과를 추정하였다. 그러나 현실적으로 일관수송용 파렛트를 사용함에 따른 장애적 효과에 대한 자료를 얻는 데에는 여리 가지 한계가 존재한다.

따라서 본 연구는 물류비용의 직접적으로 영향을 미칠 수 있는 여리 가지 항목 중에서 계량화가 가능한 항목을 중심으로 분석을 실시하였다. 각 항목을 수송, 보관, 상하역, 포장분야로 나누고 각 항목별 발생 가능한 효과들을 계량화가 가능한 항목으로 구성하였다. 이로써 일관수송용 파렛트의 효과평가 척도를 개발하고 평가해보는 장망화 방안을 개발하도록 한다.

III. 파렛트 표준화 사업의 효과평가척도 선정

1. 효과평가의 목적 및 대상

1) 효과평가의 목적

앞서 살펴본 바와 같이 물류표준화의 효과를 추정하는 선형연구는 매우 미흡한 실정이며, 특히 물류표준화의 근간이 되는 파렛트의 효과평가 및 효과평가척도 개발에 관한 연구는 현재까지 전무한 실정이다. 따라서 일관수송용 파렛트 도입에 따른 효과평가방안을 마련하고 이를 이용한 효과평가가 조속히 이루어져야 할 것으로 판단된다.

이를 위해 일관수송용 파렛트 도입에 따른 기업물류
비 및 국가물류비 절감효과를 추정하고, 물류비 절감의 요인이 되는 각 물류활동별(수송·보관·상하역·포장·정보) 영향을 정량화할 수 있는 효과평가척도의 개발이 필요하다. 또한 효과 평가를 통해 일관수송용 패렛트 표준화의 효과 및 중요성에 대한 사회적 공감대를 형성시키는 계기가 될 것으로 판단된다.

2) 효과평가 대상

현재 우리나라의 일관수송용 패렛트 규격은 유니코드 시스템 통칙, KS A 1638에 의거하여 1100×1100mm (이하 T-11)로 규정되고 있다. 현재 일관수송용 패렛트 표준인 T-11의 효과평가 방법론 개발 및 효과평가를 통하여 패렛트 표준화의 효과평가 방법론 및 효과평가척도 (MOB) 개발의 방향을 제시할 수 있을 것으로 판단된다.

이러한 전제 모델망도 패렛트 사용 가능성 여부, 패렛트 사용여부 및 일관수송용 패렛트 사용 여부 등을 기준으로 분류할 때 다음과 같이 나누어 볼 수 있다.
- 전제 모델망
- 패렛트로 처리가 가능한 모델망
- 패랫트로 처리가 가능한 모델망 중 실제 패렛트로 처리되고 있는 모델망
- 일관수송용 표준 패렛트로 처리하고 있는 모델망

패렛트를 기준으로 패렛트치르처리가능여부와 실제패렛트처리여부를 (그림 3)과 같이 나누어 살펴보면 일관수송용 표준 패렛트의 효과평가 가능 영역은 다음과 같이 제시될 수 있다.

![그림 3] 일관수송용 패렛트 효과분석 가능 범위

- Case 1 : 패랫트로 처리 가능한 부분 중 패랫트로 처리되지 않고 있는 부분(그림 3)에서 B-C)을 표준 패랫트로 처리할 경우
- Case 2 : 패랫트로 처리되고 있는 부분 중 표준 패랫트로 처리되지 않고 있는 부분(그림 3)에서 C-D)을 표준 패랫트로 처리할 경우

일관수송용 표준 패랫트의 효과평가 가능 영역 중 Case 1의 경우 국내 물류업체의 현황으로 볼 때 본 연구에서 분석이 불가능할 것으로 판단된다. 2006년 패랫트 사용 업체 3) 비율은 93.2% 4)로 이미 국내 대부분의 업체에서 패랫트를 사용하고 있으므로 알 수 있다. 현재 국내 유동·물류업 및 세조업 업체들의 대부분이 패랫트의 효과를 점검할만한 체계적 데이터를 보유하고 있지 않으며, 특히 패랫트 사용 및 도입 이전의 데이터는 더욱 확보하기 힘들어 Case 1의 분석은 어려울 것으로 판단된다.

또한, Case 2의 경우 차둘의 품목 특성상 밝혀 cheg함이 아니라 표준 규격이 일관수송용 표준 패랫트에 적재가 불가능한 경우가 발생할 수 있다. 하지만 이는일관수송용 표준 패랫트 규격 합리화 방안에 따른 표준 패랫트 규격 조정에 의해 표준 규격을 패랫트 규격에 맞게 바꾼다면 일부 품목은 표준 패랫트에 의한 일관 수송이 가능할 수 있다. 표준표준 패랫트 사용에서 일관 수송용 표준 패랫트로 전환하는 경우는 많으며 사례가 있지만 이는 대부분 정부 및 물류업과 표준화 추진에 따른 일관 수송용 표준 패랫트 사용 권고 및 지원에 의한 도입, 일관 수송에 의한 물류 효율화 및 물류비용 절감을 추진하는 경우, 물류 효율화 사례 분석 최고에 의한 도입, 기타 거래처의 요구, 패랫트 이에 사용 동의 한경이다.

이 때, 일부 물류 횟물화를 추구하는 업체의 경우 자체적인 물류 효율화 성과에 대한 자료를 보유하고 있음을 것으로 예상된다. 따라서 본 연구에서는 일관수송용 표준 패랫 T-11을 주요 효과가 대상으로 하여 T-11 외 타 규격의 패랫트 사용에서 일관수송용 표준 패랫트 T-11의 사용으로 전환하였을 경우를 분석 범위로 선정한다.

2. 효과평가척도 선정 방법

본 연구에서는 (그림 4)와 같은 절차에 따라 효과평가

3) 표준과 비표준 패랫트 사용업체 모두를 포함함.
가척도(MOE)를 선정하였다.
- 첫째, 효과평가 대상의 업무 프로세스 분석과 문헌 조사통해 영향 가능한 효과항목들을 도출하여 각 항목별 효과평가적도의 폴(pool) 구성
- 둘째, 본 연구의 분석 범위에 부합되는 예비효과평가적도 선정
- 셋째, 특별한 분석을 위하여 산업계와 학계 몰입 관련 전문가 및 업체를 대상으로 한 설문조사를 통 해 예비효과평가적도에 대한 평가를 수행하여 최종 효과평가적도 개발

이처럼 효과평가적도 개발을 위해 몰입관련 산·학·연·관의 전문가들에게 4개의 효과평가적도 요건들(목적 부합성, 조사가능성, 개선가능성, 비교가능성)의 상대적 중요도와 개별 요건들 바탕으로 한 예비효과평가적도의 유용성을 5점 척도로 평가하도록 하였다. 또한 전문가 대상 설문조사 결과를 토대로 스윙가이법(swing weighting method)과 평등법(rating scale method)을 적용하여 효과평가적도의 평가 작업을 실시하였으며, 업체 대상 설문조사에서는 각 효과평가적도의 응답가능성을 조사하였다.

몰입관련 전문가들이 예비효과평가적도를 평가하기 위해 4개의 요건항목 \(X = (x_1, x_2, x_3, x_4) \)에 대한 효용함수는 다수성 효용함수(multi-attribute utility function)의 형태로서 식(1)과 같이 정의될 수 있다.

\[
U(X_i) = U(x_1, x_2, x_3, x_4) \tag{1}
\]

개별 효과평가기준들의 유용성을 평가하는 전문가들 의 다수성 효용함수는 스윙가이법을 적용하여 도출된 개별 효과평가적도 요건항목들의 상대적 중요도를 의미하는 가중치 \(k_i \)와 개별 요건의 단일속성 효용함수를 선형합 형태로 구성하여, 식(2)와 같이 가법형 합수형태를 선택하였다.

\[
U(X) = \sum_{i=1}^{n} k_i \cdot U_i (X) \tag{2}
\]

최종적인 몰입관련 전문가들의 예비 효과평가적도들 에 대한 평가는 다수성 효용함수 값을 이용하여 수행되었다.

3. 효과평가적도 선정 결과

1) 항목별 효과평가적도 구성

본 연구에서는 몰입표준계체 구축사업 시행효과평가 적도를 개발하기 위해 우선적으로 현장조사 및 문헌조사 를 통해 효과평가적도 폴(pool)을 구성하였다. 이를 위 해 분석대상의 업무 프로세스 분석과 일반수용파리트 도입으로 추정 가능한 효과항목들을 도출하였다.

그 결과, 각 효과항목들을 평가 및 측정할 수 있는 효 과평가적도(MOE)를 17개로 선정하였으나, 예비효과평가적도 표

<table>
<thead>
<tr>
<th>구분</th>
<th>발생효과</th>
<th>예비효과평가적도</th>
</tr>
</thead>
<tbody>
<tr>
<td>수송</td>
<td>수송기판의 운용효율 향상</td>
<td>차량 적재율 (%)</td>
</tr>
<tr>
<td>분야</td>
<td>운임요금 정책 집합</td>
<td>수당당 운용(%)</td>
</tr>
<tr>
<td>보험</td>
<td>보험의 보호 효과 증대</td>
<td>장고 보관 효율 (%)</td>
</tr>
<tr>
<td>분야</td>
<td>장고 보관 효율 (%)</td>
<td>장고 자동화율 (%)</td>
</tr>
<tr>
<td>상·하 역분야</td>
<td>상·하역 인건비 감소</td>
<td>상하역 소요인력(인/건)</td>
</tr>
<tr>
<td></td>
<td>하역을 위한 정리시간 단축</td>
<td>상하역 소요인력(인/시/건)</td>
</tr>
<tr>
<td></td>
<td>하역을 위한 주차 공간 감소</td>
<td>상하역 장비 이용률 (기계화율) (%)</td>
</tr>
<tr>
<td>포장</td>
<td>포장의 간소화</td>
<td>포장비용</td>
</tr>
<tr>
<td>분야</td>
<td>포장재물비용</td>
<td>화물 손실 감소</td>
</tr>
<tr>
<td></td>
<td>화물손실율</td>
<td>물류 전반</td>
</tr>
<tr>
<td></td>
<td>일반수용 비율</td>
<td></td>
</tr>
</tbody>
</table>

5) \(\sum_{i=1}^{n} k_i = 1 \)이 되도록 정규화(normalization)하여 유도.
가척도 선정과정을 통해 정량화 가능한 항목들을 중심으로 (표 1)과 같이 12개의 항목으로 재선정하였다.

2) 효과평가척도 평가결과

본 연구에서는 12개의 예비 성과지표들을 평가하기 위해 산·학·연·관에 종사하는 총 16명의 물류관련 전문가들로 대상으로 설문조사를 시행하였다. 설문에 참여한 물류관련 전문가들의 소속기관별 현황은 (표 2)와 같다.

예비 효과평가척도의 평가를 위한 설문은 크게 4개의 평가단위를 구성하였고, 개별 개별 평가항목별로 예비효과평가척도의 유용성을 확인하는 부분으로 구성하였다.

한편, 물류관련 전문가들의 설문응답을 스위치하하여 (swing weighting method)를 적용하여 분석하였다. 그 결과 효과평가척도계의 가중치가 도출되었는데 이는 목적부합성, 조사가능성, 비교가능성, 개선가능성의 순으로 나타났다. 예비효과평가척도 평가기준의 가중치 분석결과는 (표 3)과 같다.

表 2) 소속기관별 설문참여자 현황

<table>
<thead>
<tr>
<th>부문</th>
<th>설문 응답자 소속기관 현황</th>
<th>인원(명)</th>
</tr>
</thead>
<tbody>
<tr>
<td>산업계</td>
<td>미래물류산업검정 외 3개 업계 책임자급 4</td>
<td></td>
</tr>
<tr>
<td>학계</td>
<td>인천대학교 외 4개 대학 물류관리학과 교수 5</td>
<td></td>
</tr>
<tr>
<td>연구소</td>
<td>한국교통연구원 외 3개 연구소 전문가 5</td>
<td></td>
</tr>
<tr>
<td>정부기관</td>
<td>국토해양부 및 대한상공회의소 2</td>
<td></td>
</tr>
<tr>
<td>총계</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

表 3) 예비효과평가척도 평가기준의 가중치 분석결과

<table>
<thead>
<tr>
<th>평가</th>
<th>부분</th>
<th>목적부합성</th>
<th>조사가능성</th>
<th>개선가능성</th>
<th>비교가능성</th>
</tr>
</thead>
<tbody>
<tr>
<td>산업계</td>
<td>0.3162</td>
<td>0.2411</td>
<td>0.2134</td>
<td>0.2292</td>
<td></td>
</tr>
<tr>
<td>학계</td>
<td>0.3195</td>
<td>0.2363</td>
<td>0.2141</td>
<td>0.2301</td>
<td></td>
</tr>
<tr>
<td>연구소</td>
<td>0.2887</td>
<td>0.2598</td>
<td>0.2223</td>
<td>0.2290</td>
<td></td>
</tr>
<tr>
<td>정부기관</td>
<td>0.3052</td>
<td>0.2548</td>
<td>0.2325</td>
<td>0.2102</td>
<td></td>
</tr>
</tbody>
</table>

表 4) 효과평가척도 평가전략별 예비효과평가척도 평가결과

<table>
<thead>
<tr>
<th>평가척도평가척도</th>
<th>목적부합성</th>
<th>조사가능성</th>
<th>개선가능성</th>
<th>비교가능성</th>
</tr>
</thead>
<tbody>
<tr>
<td>차량/트럭</td>
<td>3.88</td>
<td>3.81</td>
<td>3.75</td>
<td>3.94</td>
</tr>
<tr>
<td>수·배송비용(W)</td>
<td>3.88</td>
<td>3.69</td>
<td>3.69</td>
<td>3.69</td>
</tr>
<tr>
<td>장고 보관효율</td>
<td>3.66</td>
<td>3.75</td>
<td>3.96</td>
<td>3.94</td>
</tr>
<tr>
<td>장고 자동화율(%)</td>
<td>3.75</td>
<td>3.50</td>
<td>3.38</td>
<td>3.38</td>
</tr>
<tr>
<td>상하력</td>
<td>3.56</td>
<td>3.38</td>
<td>3.44</td>
<td>3.50</td>
</tr>
<tr>
<td>상하력시간(분)</td>
<td>3.64</td>
<td>3.44</td>
<td>3.56</td>
<td>3.56</td>
</tr>
<tr>
<td>상하력</td>
<td>3.44</td>
<td>3.13</td>
<td>3.38</td>
<td>3.66</td>
</tr>
<tr>
<td>상하력</td>
<td>3.88</td>
<td>3.38</td>
<td>3.31</td>
<td>3.31</td>
</tr>
<tr>
<td>포장비용(%)</td>
<td>3.25</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td>포장폐기물 처리비용(%)</td>
<td>3.06</td>
<td>3.00</td>
<td>3.25</td>
<td>3.50</td>
</tr>
<tr>
<td>화물포장비율</td>
<td>3.25</td>
<td>3.19</td>
<td>3.44</td>
<td>3.38</td>
</tr>
<tr>
<td>일반수송비용(%)</td>
<td>3.88</td>
<td>3.44</td>
<td>3.38</td>
<td>3.63</td>
</tr>
</tbody>
</table>

주1: 위에 제시한 점수는 요인항목별 개별 효과평가척도에 대한 유용성을 ①적한 유용하지 않다, ②유용하지 않다, ③보통, ④유용하다, ⑤매우 유용하다 등 5점 척도로 표시한 것임.

주2: 설명으로 표시된 부분은 요인항목별 평가점수가 상위 5위 까지의 효과평가척도를 나타낸 것임.
(표 5) 종합화된 요건항목별 예비효과평가척도의 평가결과

<table>
<thead>
<tr>
<th>예비효과평가척도</th>
<th>산업계</th>
<th>학계</th>
<th>연구소</th>
<th>관(정부)</th>
<th>전체</th>
</tr>
</thead>
<tbody>
<tr>
<td>차량/트럭 적재률(%)</td>
<td>73.98</td>
<td>81.70</td>
<td>70.39</td>
<td>66.29</td>
<td>74.79</td>
</tr>
<tr>
<td>수·배송 비용(%)</td>
<td>66.47</td>
<td>68.99</td>
<td>67.95</td>
<td>75.53</td>
<td>68.56</td>
</tr>
<tr>
<td>창고 보관 효율(%)</td>
<td>71.46</td>
<td>70.62</td>
<td>76.73</td>
<td>59.84</td>
<td>71.05</td>
</tr>
<tr>
<td>창고 자동화율 (%)</td>
<td>63.78</td>
<td>66.88</td>
<td>56.38</td>
<td>69.14</td>
<td>62.92</td>
</tr>
<tr>
<td>상하역 소요시간(분)</td>
<td>51.43</td>
<td>62.54</td>
<td>69.64</td>
<td>62.85</td>
<td>61.80</td>
</tr>
<tr>
<td>상하역 시간(분/통)</td>
<td>56.79</td>
<td>62.54</td>
<td>72.21</td>
<td>75.79</td>
<td>65.54</td>
</tr>
<tr>
<td>상하역 소요시간(분)</td>
<td>51.43</td>
<td>53.84</td>
<td>63.96</td>
<td>78.63</td>
<td>59.28</td>
</tr>
<tr>
<td>상하역 장비 이용률(%)</td>
<td>47.70</td>
<td>73.36</td>
<td>67.43</td>
<td>75.62</td>
<td>61.02</td>
</tr>
<tr>
<td>포장 편거를 처리 비용비중(%)</td>
<td>60.05</td>
<td>58.54</td>
<td>58.94</td>
<td>75.62</td>
<td>61.02</td>
</tr>
<tr>
<td>화물 손실율 (%)</td>
<td>48.02</td>
<td>46.77</td>
<td>61.06</td>
<td>72.25</td>
<td>54.68</td>
</tr>
<tr>
<td>일관성수용 비율 (%)</td>
<td>61.16</td>
<td>70.77</td>
<td>71.87</td>
<td>41.13</td>
<td>64.85</td>
</tr>
</tbody>
</table>

3) 효과평가척도의 실제 응답가능성 조사 결과

예비 효과평가척도들간의 실제 응답가능성을 조사하기 위해 일관수용을 실시하고 있는 기업체를 대상으로 설문조사 를 실시하였다. 과정과 사용설계 조사(1차 설문조사를)를 우선 실시한 후, 응답결과 일관수용을 실시한 경험이 있고 일관수용 표준 파트(1-11)를 사용하고 있는 업체를 대상으로 심층설문조사(2차 설문조사를)를 실시하였다.

(표 6) 예비효과평가척도의 측정가능성 및 객관가능성 조사결과

<table>
<thead>
<tr>
<th>예비효과평가척도</th>
<th>측정가능성(%)</th>
<th>객관가능성(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>차량/트럭 적재률(%)</td>
<td>82.61</td>
<td>84.21</td>
</tr>
<tr>
<td>수·배송 비용(%)</td>
<td>97.83</td>
<td>88.89</td>
</tr>
<tr>
<td>창고 보관 효율(%)</td>
<td>78.26</td>
<td>91.67</td>
</tr>
<tr>
<td>창고 자동화율 (%)</td>
<td>73.91</td>
<td>94.12</td>
</tr>
<tr>
<td>상하역 소요시간(분)</td>
<td>91.30</td>
<td>95.24</td>
</tr>
<tr>
<td>상하역 시간(분/통)</td>
<td>88.96</td>
<td>95.00</td>
</tr>
<tr>
<td>상하역 소요시간(분)</td>
<td>86.96</td>
<td>95.00</td>
</tr>
<tr>
<td>상하역 장비 이용률(%)</td>
<td>91.30</td>
<td>90.48</td>
</tr>
<tr>
<td>포장 편거를 처리 비용비중(%)</td>
<td>76.09</td>
<td>88.57</td>
</tr>
<tr>
<td>포장 편거를 처리 비용비중(%)</td>
<td>34.78</td>
<td>87.50</td>
</tr>
<tr>
<td>화물 손실율 (%)</td>
<td>71.74</td>
<td>93.94</td>
</tr>
<tr>
<td>일관성수용 비율 (%)</td>
<td>78.26</td>
<td>94.44</td>
</tr>
</tbody>
</table>

* 위 조사결과는 일관수용을 실시하고 있는 업체 45개를 대상으로 조사한 결과임

** 측정가능성은 조사대상 업체들에 대한 각 예비효과평가척도의 측정 가능 비율이며, 객관가능성은 각 예비효과평가척도들에 대한 측정이 가능하다고 응답한 업체들 중 전체가 객관가능한 비율임

업체를 대상으로 실시한 조사는 실제 측정가능성과 측정가능성 시 해당 항목의 객관가능성을 조사하였다. 이와 같은 방법으로 예비효과평가척도의 응답가능성을 조사한 결과는 (표 6)과 같다.

(표 7) 최종 선정된 효과평가척도(MOE)

<table>
<thead>
<tr>
<th>구분</th>
<th>예비 MOE*</th>
<th>전문가 평가결과</th>
<th>업체 조사결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>수송</td>
<td>MOE-2</td>
<td>73.98</td>
<td>81.70</td>
</tr>
<tr>
<td>보관</td>
<td>MOE-2</td>
<td>66.47</td>
<td>68.99</td>
</tr>
<tr>
<td>상하역</td>
<td>MOE-4</td>
<td>71.46</td>
<td>70.62</td>
</tr>
<tr>
<td>포장</td>
<td>MOE-9</td>
<td>60.05</td>
<td>58.54</td>
</tr>
<tr>
<td>기타</td>
<td>MOE-2</td>
<td>61.16</td>
<td>70.77</td>
</tr>
</tbody>
</table>

* 예비MOE의 범례는 아래와 같음

MOE-1 | 차량/트럭 적재율(%) | MOE-7 | 상하역 소요시간(분) |
MOE-2 | 수·배송 비용(%) | MOE-8 | 상하역 장비 이용률(%) |
MOE-3 | 창고 보관 효율(%) | MOE-9 | 포장 비용 비중(%) |
MOE-4 | 창고 자동화율(%) | MOE-10 | 포장 편거를 처리 비용비중(%) |
MOE-5 | 상하역 소요시간(분) | MOE-11 | 화물 손실율(%) |
MOE-6 | 상하역 시간(분/통) | MOE-12 | 일관성수용 비율(%) |

** 선정결과의 범례는 아래와 같음

선정 | 선정기준 1, 2, 3을 모두 만족하여 최종 선정
탈락1 | 선정기준 1을 만족시키지 못하여 탈락
탈락2 | 선정기준 1을 만족시키지 못하여 탈락
탈락3 | 선정기준 2를 만족시키지 못하여 탈락
탈락4 | 선정기준 3을 만족시키지 못하여 탈락
탈락5 | 선정기준 4, 5, 6을 만족시키지 못하여 탈락
표 8. 종합관리 요건항목별 효과평가방식의 평가결과

<table>
<thead>
<tr>
<th>효과평가방식</th>
<th>적용 원단위</th>
<th>적용방안</th>
</tr>
</thead>
<tbody>
<tr>
<td>차량/트럭적용률 (%)</td>
<td>차량 1회 (1대)</td>
<td>(차량출하량/적용값) × 1회 (1대) 차량 운용비 기준</td>
</tr>
<tr>
<td>창고보안효율 (%)</td>
<td>단위면적당 창고 운용비용</td>
<td>창고면적 × 창고보안효율</td>
</tr>
<tr>
<td>상하역시간 (분/단)</td>
<td>1단당 품질 상하역 인건비</td>
<td>상하역 시간 × 1단당 품질 상하역 인건비</td>
</tr>
<tr>
<td>포장비용비율 (%)</td>
<td>연평균 매출액</td>
<td>연평균 매출액 / 포장비용 비중</td>
</tr>
</tbody>
</table>

- 전체출하량 : 우리나라 총 품질 = 1,603,043,329(출처 : KTDB 2007년 국가통 DB사업 참 조 것) 전국 지역간 특화물동차 운용량
- 1회 (1대) 품질창고운용비용 = 236,327(업체면적설정조사 결과)
- 우리나라 창고 전체면적 = 6,125,488m²(출처 : (주)TLEK 통로ussy 연성소)
- 1단당 상하역 인건비 = 87원 / 단 (업체면적설정조사 결과 1단당 품질 상하역 인건비 1,249,048원 / 결과 값 확인)
- 연평균 매출액 = 1,533,260원(출처 : 대상상의 기업정보 DB)

4. 최종 효과평가척도 선정결과

전문가 평가결과와 업계 대상 응답가능성 조사 결과를 바탕으로 최종 효과평가척도(MOE)를 선정하였다. 최종 효과평가척도를 선정하기 위한 기준은 다음과 같다.

- 선정기준 1: 전문가 설문조사 결과 평가접수결과가 60점 이상일 경우 최종 효과평가척도로 선정한다.
- 선정기준 2: 업계 대상 조사에서 측정가능성이 75% 이상일 경우 최종 효과평가척도로 선정한다.
- 선정기준 3: 업계 대상 조사에서 경신가능성이 80% 이상일 경우 최종 효과평가척도로 선정한다.
- 선정기준 4: 위 3가지 기준으로 선정결과 하나의 물류활동분야에서 2개 이상의 MOE가 선정될 경우 전문가 평가접수결과가 더 높은 것을 선정한다.

위의 4가지 선정기준을 적용하여 최종 효과평가척도를 선정하였다. 그 결과 [표 7]에서 보는 바와 같이 차량/트럭 적재율, 창고 보안 효율, 상하역 시간, 포장비용 비중, 일관성 비중에서 각 5가지 척도가 선정되었다.

한편 각 효과평가척도의 계량화를 위해서는 효과평가척도의 평균값에 원단위를 적용함으로써 비율적 차로 환산한 다. 개별 효과척도별 원단위 적용방안은 [표 8]과 같다.

Ⅳ. 결론 및 향후 연구과제

물류표준화는 표준화에 따른 비용절감 및 효율성 제고 등으로 인해 산업 부문뿐만 아니라 국민경제에 미치는 영향이 지대할 것으로 예상된다. 그러나 이와 같은 중 요성에도 불구하고 우리나라에서는 아직까지 물류 분야의 표준화가 본격적으로 추진되지 않고 있는 실정이다.

물류표준화가 시행되기 위해서는 표준화의 필요성 및 그에 따른 효과를 명확히 제시해야 할 필요가 있다. 이를 위해 물류표준화의 효과 측정 및 효과 평가방법을 명확히 하여 물류표준화의 효과를 정량적으로 계산하여야 한다. 그러므로 현재 물류표준화의 효과에 대해 명확한 분석이 이루어지지 않고 있음에 따라 표준화에 따른 효과를 평가하기 위한 척도도 마련되어 있지 않은 실정이다.

이처럼 물류표준화의 효과를 측정하는 데선 연구는 매우 미흡한 실정이며, 특히 물류표준화의 근간이 되는 파트트의 효과평가 및 평가척도 개발에 관한 연구는 현 재까지 극단적인 실정이다. 따라서 일반수송용 파트트 도입에 따른 효과평가방안을 마련하고 이를 이용한 효과평가가 시행되어야 할 것으로 판단된다. 이를 위해 우선 일반수송용 파트트 도입에 따른 기업물류비용 및 국가물류비용 절감효과를 추정하고, 물류비용 절감의 요인에 대한 각 물류활동에 (수송, 보관, 상하역, 포장, 정보) 영향을 정량화할 수 있는 효과평가척도의 개발이 필요하다.

따라서 본 연구에서는 일반수송 중심의 물류표준화의 근간이 되는 일반수송용 파트트 표준화의 효과평가방안에 대해 살펴보고, 표준화에 따른 효과를 평가하기 위해 효과 평가척도(MOE)를 선정하였다. 효과평가척도 선정을 위해 우선 효과평가척도로 선정하였는데, 연구 결과 차량적용율, 수·배송 비용, 창고보안효율, 창고 자동화율, 상·하역 소요임력 등 12개의 척도가 선정되었다.

이와 같이 선정된 예비효과평가척도를 이용하여 전문가 평가와 업계 대상 응답가능성 조사 결과를 바탕으로 최종 효과평가척도를 선정한 결과, 차량/트럭 적재율, 창고보안 효율, 상·하역 시간, 포장비용 비중, 일관성 비중이 파트트 표준화에 따른 효과평가를 위한 척도로 선정되었다.

향후 연구에서는 앞에서 제시한 일반수송용 표준 파트트의 효과를 측정할 수 있는 효과평가척도를 활용하여 파트트 표준화에 따른 효과를 직접 평가하여 파트트 표준화의 저속한 시행이 이루어져도 해야 할 것이다. 또한 파트트 이외의 다양한 물류활동에 대한 표준화 효과 평가 척도 개발이 이루어져야 할 것으로 판단된다.
참고문헌

2. 권안식·박인순·장경식(2007), "한·중·일 파렛트 표준화로 인한 기대효과에 관한 연구", 대한안전경 영과학회지. 제9권 제4호. pp.91~98.
3. 기술표준원(2004), "아시아지역 물류표준 보급 확산 전략(파렛트 표준화물 중심으로)".
4. 박영남·김원중, "국내 물류기기표준화가 기업성과에 미치는 영향에 관한 연구", 공업경영학회지. 제22권, pp.155~170.
5. 이순철·홍성욱·문대섭(2005), "기업물류비용에 대한 물류표준화의 경제적 효과 분석: 파렛트 표준화물 중심으로", 해운물류학회. 제47호. pp.121~144.
6. 한국파렛트컨테이너협회(2006), "파렛트·컨테이너 생산 및 사용 실태조사 보고서".
7. 한국표준협회(2002), "KS A 1638: 유닛로드 시스템 통칙".