Biomimetics of Nano-pillar

나노섬모의 자연모사 기술

  • 허신 (한국기계연구원 프린팅공정/자연모사연구실) ;
  • 최홍수 (한국기계연구원 프린팅공정/자연모사연구실) ;
  • 이규항 (한국기계연구원 프린팅공정/자연모사연구실) ;
  • 김완두 (한국기계연구원 프린팅공정/자연모사연구실)
  • Published : 2009.06.30


The cochlea of the inner ear has two core components, basilar membrane and hair cells. The basilar membrane disperses incoming sound waves by their frequencies. The hair cells are on the basilar membrane, and they are the sensory receptors generating bioelectric signals. In this paper, a biomimetic technology using ZnO piezoelectric nano-pillar was studied as the part of developing process for artificial cochlea and novel artificial mechanosensory system mimicking human auditory senses. In particular, ZnO piezoelectric nano-pillar was fabricated by both low and high temperature growth methods. ZnO piezoelectric nano-pillars were grown on solid (high temperature growth) and flexible (low temperature growth) substrates. The substrates were patterned prior to ZnO nano-pillar growth so that we can selectively grow ZnO nano-pillar on the substrates. A multi-physical simulation was also conducted to understand the behavior of ZnO nano-pillar. The simulation results show electric potential, von Mises stress, and deformation in the ZnO nano-pillar. Both the experimental and computational works help characterize and optimize ZnO nano-pillar.


  1. D. P. Corey, 'What is the hair cell transduction channel?', J. Physiol., 576, 23 (2006)
  2. P. S. Guth, P. Perin, C. H. Norris, and P. Valli, 'The vestibular hair cells: Post-transactional signal processing', Prog. Neurobio., 54, 193 (1998)
  3. M. Strassmaier and P. G. Gillespie, 'The hair cell's transduction channel', Cur. Opin. Neurobio., 12, 380 (2002)
  4. L. Chen, P. G. Trautwein, M. Shero, and R. J. Salvi, 'Tuning, spontaneous activity and tonotopic map in chicken cochlear ganglion neurons following sound-induced hair cell loss and regeneration', Hear. Res., 98, 152 (1996)
  5. D. Robert, M. P. Read, and R. R. Hoy, 'The tympanal hearing organ of the parasitoid fly Ormia ochracea (Diptera, Tachinidae, Ormiini)', Cell Tis. Res., 275, 63 (1993)
  6. R. J. Goodyear, W. Marcotti, C. J. Kros, and G. P. Richardson, 'Development and properties of stereociliary link types in hair cells of the mouse cochlea', J. Comp. Neur., 485, 75 (2005)
  7. B. Kachar, M. Parakkal, M. Kurc, Y. Zhao, and P. G. Gillespie, 'High-resolution structure of hair-cell tip links', Proc. Nat. Aca. Sci., 97, 13336 (2000)
  8. A. N. Salt and J. E. DeMott, 'Longitudinal endolymph movements and endocochlear potential changes induced by stimulation at infrasonic frequencies', J. Acou. Soc. Ame., 106, 847 (1999)
  9. S. S. Gill and A.N. Salt, 'Quantitative differences in endolymphatic calcium and endocochlear potential between pigmented and albino guinea pigs', Hear. Res., 113, 191 (1997)
  10. W. A. Svrcek-Seiler, I. C. Gebeshuber, F. Rattay, T. S. Biro, and Harald Markum, 'Micromechanical Models for the Brownian Motion of Hair Cell Stereocilia', J. Theo. Bio., 193, 623 (1998)
  11. Y. W. Hwang, D. Kim, P. W. Heo, S. J. Park, E. S. Yoon, 'The Mechanical Model Analysis of the Stereocilia Bundle', KSME fall conf., pp. 1702-1706 (2005)
  12. D. N. Furness, D. E. Zetes, C. M. Hackney, and C. R. Steele, 'Kinematic analysis of shear displacement as a means for operating mechanotransduction channels in the contact region between adjacent stereocilia of mammalian cochlear hair cells', Proc. R. Soc. Lon. Biol. Sci., 264, 45 (1997)
  13. R. B. Silver, A. P. Reeves, A. Steinacker, and S. M. Highstein, 'Examination of the cupula and stereocilia of the horizontal semicircular canal in the toadfish Opsanus tau', J. Comp. Neur., 402, 48 (1998)<48::AID-CNE4>3.0.CO;2-9
  14. M. G. Langer, A. Koitschev, H. Haase, U. Rexhausen, J. K. H. Horber, and J. P. Ruppersberg, 'Mechanical stimulation of individual stereocilia of living cochlear hair cells by atomic force microscopy', Ultramicro., 82, 269 (2000)
  15. W.L. Valk, M.L.Y.M. Oei, J.M. Segenhout, F. Dijk, I. Stokroos, F.W.J. Albers, 'The Glycocalyx and Stereociliary Interconnections of the Vestibular Sensory Epithelia of the Guinea Pig, A Freeze-Fracture, Low-Voltage Cryo-SEM, SEM and TEM Study', J. Oto-Lary.y, Head Neck sur., 64, 242 (2002)
  16. M. G. Langer, S. Fink, A. Koitschev, U. Rexhausen, J. K. H. Hörber, and J. P. Ruppersberg, 'Lateral Mechanical Coupling of Stereocilia in Cochlear Hair Bundles', Biophy. J., 80, 2608 (2001)
  17. J. J. Zhou, F. Noca, and M. Gharib, 'Flow conveying and diagnosis with carbon nanotube arrays', Nanotech., 17, 4845 (2006)
  18. F. Li, L. Zhang, and R. M. Metzger, 'On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide', Chem. Mater., 10, 2470 (1998)
  19. J. Liang, H. Chik, A. Yin, and J. Xu, 'Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template', J. Appl. Phys., 91, 2544 (2002)
  20. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, 'Antireflective transparent covers for solar devices', Solar Ener., 68, 357 (2000)
  21. H. S. Choi, J. L. Ding, A. Bandyopadhyay, and S. Bose, 'Finite element analysis of piezoelectric thin film membrane structures', IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 54, 2036 (2007)
  22. H. S. Choi, J. L. Ding, A. Bandyopadhyay, M. J. Anderson, and S. Bose, 'Characterization and modeling of a piezoelectric micromachined ultrasonic transducer with a very large length/width aspect ratio', J. Micromech. Microeng., 18, 10 (2008)