DOI QR코드

DOI QR Code

ON THE COMPLEX OSCILLATION OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Published : 2009.07.31

Abstract

In this paper, we investigate the growth of solutions and the existence of subnormal solutions for a class of higher order linear differential equations. We obtain some results which improve and extend the results of Chen-Shon [2] and Gundersen-Steinbart [5].

References

  1. T. B. Cao and H. X. Yi, On the complex oscillation of higher order linear differential equations with meromorphic coefficients, J. Syst. Sci. Complex. 20 (2007), no. 1, 135. 148 https://doi.org/10.1007/s11424-007-9012-7
  2. Z. X. Chen and K. H. Shon, On subnormal solutions of second order linear periodic differential equations, Sci. China Ser. A 50 (2007), no. 6, 786.800 https://doi.org/10.1007/s11425-007-0050-3
  3. Y. M. Chiang and S. A. Gao, On a problem in complex oscillation theory of periodic second order linear differential equations and some related perturbation results, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 273.290
  4. G. Gundersen and E. M. Steinbart, Subnormal solutions of second order linear differential equations with periodic coefficients, Results Math. 25 (1994), no. 3-4, 270.289 https://doi.org/10.1007/BF03323411
  5. G. Jank and L. Volkmann, Einfuhrung in die Theorie der ganzen und Meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhauser Verlag, Besel, 1985
  6. L. Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math. 22 (1998), no. 4, 385.405
  7. I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter Studies in Mathematics, 15. Walter de Gruyter & Co., Berlin, 1993
  8. C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003
  9. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), no. 1, 88.104 https://doi.org/10.1112/jlms/s2-37.121.88
  10. H. Wittich, Subnormale Losungen der Differentialgleichung: $$w^{\prime\prime}+p(e^{z})w^{\prime}+q(e^{z})w$=0, Nagoya Math. J. 30 (1967), 29.37 https://doi.org/10.1017/S0027763000012320