
Bull. Korean Math. Soc. 46 (2009), No. 4, pp. 771–787
DOI 10.4134/BKMS.2009.46.4.771

VERIFICATION OF A PAILLIER BASED SHUFFLE USING
REPRESENTATIONS OF THE SYMMETRIC GROUP

Soojin Cho and Manpyo Hong

Abstract. We use an idea of linear representations of the symmetric
group to reduce the number of communication rounds in the verification
protocol, proposed in Crypto 2005 by Peng et al., of a shuffling. We
assume Paillier encryption scheme with which we can apply some known
zero-knowledge proofs following the same line of approaches of Peng et al.
Incidence matrices of 1-subsets and 2-subsets of a finite set is intensively
used for the implementation, and the idea of λ-designs is employed for
the improvement of the computational complexity.

1. Introduction

There have been enormous amount of research and great improvement on
mix-net since the scheme of mix-net [3] was proposed by D. Chaum for the
anonymous communication in 1981: New encryption schemes were employed
[26, 24, 16], weaknesses pointed out through many analyses [30, 29, 21] of the
early construction of mix-net has produced more advanced and securer mix
networks [24, 7]. For many different purposes for anonymity, various systems
were developed; for web services, real time systems were developed [10], and for
mailing services non real time systems like babel, mixmaster and mixminion
were cultivated [6]. Network topology and mixing mechanism are some of other
concerns in constructing mix-nets [5, 9]. Measuring the anonymity of mix-nets
is another important fundamental work [32, 8].

One of the most important matters is on the proof of correctness of the
mix net. Roughly speaking, there are two kinds of proof system of mix-nets;
one is optimistic and the other is verifiable proof system. The correctness
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of the shuffling of the whole mix-net is verified after the mix-net outputs the
shuffling results in plain texts in optimistic proof system [17], while in verifiable
proof system each mix server provides proofs of correctness of the shuffling
[28, 14, 1, 18, 22, 23, 27, 33].

Verification techniques for mix-nets vary according to the mix-net implemen-
tation and vice versa. Permutation network is the framework of the verification
protocol proposed by Abe [1], ElGamal re-encryption scheme and Paillier re-
encryption scheme are used for the proof system of Furukawa-Sako [14] and
Nguyen et al. [23] respectively. A more general scheme than ElGamal is al-
lowed to apply the verification by Neff [22]. In the proof system by Groth [18],
additively homomorphic re-encryption scheme is necessary. In sender verifi-
able mix-net based on ElGamal encryption by Wikström, no re-encryption is
needed. In [28], Peng et al. applied the idea of Abe [1] to design a proof system
for mix-nets employing ElGamal re-encryption system and a very carefully de-
signed proof system by Peng et al. [27] assumes the additively homomorphic
(re-)encryption schemes. A recent work by Groth and Lu [19] is based on the
homomorphic encryption scheme also, in which computational complexity has
been dramatically reduced.

Our main concern is to implement a verification for a shuffle in a re-encryp-
tion mix-net implemented with Paillier encryption scheme: We extend the
idea of [27] for the verification of a shuffle by considering pairs of messages
rather than single messages. This enables us to do the verification in reduced
number of communication rounds than four rounds as in [27]. Computationally
improved protocol is also suggested using the idea of λ-designs.

In Section 2 we introduce the related works, explain the motivated idea in
Section 3. In Section 4, the basics for our mix-net and shuffling is set up and
some basic necessary results are presented. In Section 5, the protocol for the
proof is given, while the proofs of its correctness and privacy is given in Sec-
tion 6 using incidence matrices. In Section 7, we describe an (computationally)
improved protocol by applying λ-designs and do a comparison with Peng et
al.’s. We conclude with some final remarks.

2. Related works: Furukawa-Sako and Peng et al.

In [14], Furukawa-Sako describes an equivalent condition for a matrix to be
a permutation matrix which involves quadratic and cubic relations among the
entries of a given matrix. The proof of the shuffle for ElGamal encryption
scheme and Paillier encryption scheme have been implemented in [14] and [23]
respectively.

Peng et al. in [28], restrict the set of available permutations and employ
batch verifications of knowledge to reduce the computational cost of the proof.
Recently, Groth and Lu suggested very efficient schemes extending the idea of
previously known works on the verification [19].
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In [27], Peng et al. proposed a very carefully designed, efficient proof system
on mix-nets with additively homomorphic re-encryption scheme: Let E(m, r)
be the encryption of the message m with randomizer r and D(c) be the decryp-
tion of ciphertext c. When c1, c2, . . . , cn is the list of cipher texts a shuffling
party receives from the previous shuffling party, let c′1, c

′
2, . . . , c

′
n be the list

of outputs of the current shuffling party that is supposed to be passed to the
next shuffling party. Then, when N is the modulus of the message space, the
basic idea of the proof is to let the shuffling party do the zero-knowledge proof
of the followings; for random integers si, s

′
i, i = 1, 2, . . . , n, (s)he knows ti, t

′
i,

i = 1, 2, . . . , n, such that
n∑

i=1

siD(ci) =
n∑

i=1

tiD(c′i) (mod N) ,(1)

n∑

i=1

s′iD(ci) =
n∑

i=1

t′iD(c′i) (mod N) ,(2)

n∑

i=1

sis
′
iD(ci) =

n∑

i=1

tit
′
iD(c′i) (mod N) .(3)

For the implementation of (1), (2) and (3), they adopted known zero-knowledge
proofs of knowledge of logarithm, equality of logarithms and knowledge of root,
and has shown that at least four communication rounds are necessary.

3. Motivation: Representation of the symmetric group

We briefly introduce the theory of group representations, especially of the
symmetric groups, which has motivated the current work. We refer to [31] and
[13] for more detailed argument on the theory of representations.

Definition. A d-dimensional representation of a group G over a field F is a
d-dimensional F-vector space V equipped with a group homomorphism

ρ : G → GL(V ) ,

where GL(V ) is the group of invertible linear transformations from V to V .

Group representations, once a basis of the vector space V is fixed, represents
group elements as matrices so that the structure of the given group is preserved.
Moreover, ρ : G → GL(V ) defines a G-action on V : For g ∈ G and v ∈ V ,

g · v = (ρ(g)) (v) .

A representation V of a group G is irreducible if there is no nontrivial in-
variant subspace W of V under the action of G.

Proposition 3.1 (Maschke’s Theorem). Let V be a representation of a finite
group G over a field F. If the characteristic of F is either 0 or relatively prime
to |G|, then V is a direct sum of irreducible representations of G.
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The symmetric group Sn is a group of n ! permutations of n objects equipped
with the composition. A partition of a positive integer n is a non-increasing
finite sequence of positive integers, whose sum is n. For example, (4, 3, 3, 1) is a
partition of 11. For a given partition ν = (ν1, . . . , νl) of n, a standard ν-tableau
is an (left justified) array of νi integers in the ith row so that each column and
row are increasing from top to bottom and from left to right respectively, where
the set of integers used is exactly {1, 2, . . . , n}. We let fν denote the number
of standard ν-tableaux.

For our case, n (therefore n !) can be assumed to be relatively prime to the
modulus in use that is a product of big primes. Hence, we can apply Maschke’s
Theorem to the representations of Sn of our concern.

Proposition 3.2. There is an irreducible representation Sν of Sn of dimension
fν for each partition ν of n. Moreover they form the complete list of irreducible
representations of Sn and every representation of Sn is a direct sum of Sν ’s.

To represent every permutation in Sn as an n × n permutation matrix as
Furukawa-Sako did in [14] is a representation of Sn called defining representa-
tion. Defining representation is basically an action of Sn on the set {1, 2, . . . , n},
and is a direct sum of the 1-dimensional trivial representation S(n) and (n−1)-
dimensional representation S(n−1,1). From this observation, extending the work
of Furukawa-Sako, we may consider some natural ways to represent the given
permutation in Sn as a matrix of various dimensions. Since the representa-
tion Furukawa-Sako used is basically corresponding to the partition (n− 1, 1),
we may consider the partition (n − 2, 2) as a second simplest case: Sn-action
on the set of 2-subsets of {1, 2, . . . , n} rather than on the set of 1-subsets of
{1, 2, . . . , n}. If we call this representation M (n−2,2) and the defining represen-
tation M (n−1,1), it is known that

M (n−2,2) ∼= M (n−1,1) ⊕ S(n−2,2) ∼= S(n) ⊕ S(n−1,1) ⊕ S(n−2,2) .

Note that a permutation in Sn is represented as an
(
n
2

)× (
n
2

)
matrix on the

representation M (n−2,2) since it is
(
n
2

)
-dimensional (and dim S(n−2,2) =

(
n
2

) −(
n
1

)
). Note also that M (n−2,2) contains the defining representation M (n−1,1) as

well as the irreducible representation S(n−2,2) which makes our new choice of
Sn representation special.

We expect that using (linear) representation M (n−2,2) of Sn instead of
M (n−1,1) would let us explain non-linear relations that are indispensable to
prove that a given matrix is a permutation matrix in zero-knowledge manner:
Furukawa-Sako [14] used quadratic and cubic relations of the entries of a given
matrix, and Peng et al. used a quadratic relation of the entries of a transfor-
mation matrix between two sets of decrypted messages, that a shuffling party
used as in the Equation (3).

Using the idea explained above and by extending the work by Peng et al.
[27], we can implement a proof system for a shuffling with reduced number of
communication rounds than the one in [27] since our proof system does not
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need to ask the shuffling party to prove non linear equations. We have to pay
more computational cost for the verification in general instead. We, however,
can control the level of computation cost by adopting the idea of λ-designs.

Our method of proof is to let each shuffling party prove the followings,
instead of equations (1), (2) and (3).

For given random integers sij , 1 ≤ i 6= j ≤ n, he knows tij ’s, such that

∑

i<j

sij(D(ci) + D(cj)) =
∑

i<j

tij(D(c′i) + D(c′j)) (mod N) ,

∑

i<j

sijD(ci)D(cj) =
∑

i<j

tijD(c′i)D(c′j) (mod N) .

4. Paillier based shuffling

As the proof system of Peng et al. [27] does, our proof system relies on the
property of homomorphic encryption. We take Paillier encryption scheme for
the underlying encryption and decryption, which is additively homomorphic.

4.1. Paillier encryption scheme

Key generation: The modulus of the message space is N = p q for two
large primes p < q. A base g ∈ Z∗N2 is an element of order N` for some
` ∈ {1, . . . , µ}, where µ is the least common multiple of p− 1 and q− 1
and Z∗N2 is the multiplicative group of invertible elements in ZN2 .

Encryption: For a message m ∈ ZN , select a random r ∈ Z∗N . Then the
ciphertext is computed by

c = gm · rN (mod N2) .

Decryption: For a given ciphertext c ∈ Z∗N2 , the plaintext m is computed
by

m =
L(cµ mod N2)
L(gµ mod N2)

(mod N) ,

where L is the function defined as L(u) = u−1
N for u ∈ Z∗N2 such that

u = 1 (mod N).

As usual, p and q are one of the security factors of the scheme, so the
probability of knowing a factorization of N is negligible and p is comparatively
larger than the number of messages. We let α be an integer such that 2α < p,
as Peng et al. did in [27], that is necessary for the arguments of the protocol
security, since we use composite integers for the modulus of the message space.

We let E(m, r) denote the encrypted message of m with randomizer r and
D(c) denote the decryption of a cipher text c. We also use E(m) for the
encryption of m with some random number when there is no need to specify
the random number for the encryption. The re-encryption of a cipher-text c
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is denoted by RE(c, r) = cE(0, r). It is well known that Paillier encryption is
(additively) homomorphic: We have

(4) E(m1 + m2, r
′) = E(m1, r1)E(m2, r2) .

For the implementation of the main idea, we let Ẽ be another Paillier en-
cryption defined on the same message space and the ciphertext space but with
different bases of the ciphertext space. Then the corresponding decryption D̃
is multiplicatively homomorphic:

(5) D̃(e1e2) = D̃(e1) + D̃(e2) .

Following proposition is very basic but useful for us to prove the correctness
of our protocol.

Proposition 4.1. When 0 ∈ ZN is the additive identity and 1 ∈ Z∗N2 is the
multiplicative identity, followings are satisfied:

1. D̃(1) = 0.
2. D̃(c1c

−1
2 ) = D̃(c1)− D̃(c2) for all c1, c2 ∈ Z∗N2 .

Proof. Since Ẽ(0, r) = 1 when r = 1 ∈ Z∗N and the encryption is one-to-one,
D̃(1) = 0 must hold. For any c ∈ Z∗N2 , D̃(cc−1) = D̃(1) = 0 by the first
part. On the other hand, D̃(cc−1) = D̃(c)+ D̃(c−1) by (5). Therefore, we have
D̃(c−1) = −D̃(c) and the second part follows. ¤

Useful properties of Paillier encryption scheme is stated in the following
proposition and corollary.

Proposition 4.2 (Lemma 5 in [25]). The decrypted message of c ∈ Z∗N2 is
0 ∈ ZN if and only if c is an N th residue modulo N2, that is c = xN (mod N2)
for some x ∈ Z∗N2 .

Corollary 4.3. For any choice of bases for E and D̃, following is satisfied:

D̃(E(0, r)) = 0 for any r .

Proof. By Proposition 4.2, it is sufficient to show that E(0, r) = xN (mod N2)
for some x ∈ Z∗N2 and this is immediate from the definition of the Paillier
scheme. ¤

4.2. Shuffle

We let {m1,m2, . . . , mn} be the set of original messages and {c1, c2, . . . , cn},
ci = E(mi), 1 ≤ i ≤ n, be the set of encrypted messages. Then a mix-net
contains many rounds of shufflings defined as follows.

Shuffling party receives a set {c1, c2, . . . , cn} of encrypted messages from
the previous shuffling party and outputs another set of encrypted messages
{c′1, c′2, . . . , c′n} that is obtained as follows: for any i, c′i = RE(cπ(i), ri) for
some permutation π ∈ Sn and randomizers ri.
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A verification of a shuffle is a process to verify, without revealing any infor-
mation, that a shuffling party did the shuffling in an honest way; that is there
is a permutation π ∈ Sn such that D(c′i) = D(cπ(i)).

4.3. Assumption

We make an assumption that the linear ignorance condition for the set
{m1, . . . , mn} of messages and the set {mimj | 1 ≤ i < j ≤ n} of products
of messages are satisfied, where the linear ignorance condition is defined as
follows. Linear ignorance condition is assumed in the first protocol of [27]:

Definition. A set of messages {m1,m2, . . . , mn} satisfies the linear ignorance
condition if given a set of cipher-texts {c1, c2, . . . , cn} of {m1,m2, . . . , mn}, the
possibility for an adversary to find a non-trivial linear relation of {m1, . . . , mn}
is negligible.

Remark 4.4. We may drop the assumption on the linear ignorance condition
if we use the method of the second protocol of Peng et al. in [27]. We do not
deal with that matter in the present article though.

4.4. A theorem by Peng et al.

The following proposition is proved in [27], and we state it for our later use.
(See Lemmas 1, 2, 3 and 4 in [27].) For a given matrix A, we use At for the
transpose matrix of A.

Proposition 4.5. Suppose that {m1,m2, . . . , mn} satisfies the linear ignorance
condition, and let {c′1, c′2, . . . , c′n} be the corresponding output of {c1, c2, . . . , cn}
by a shuffling party. For random numbers s1, s2, . . . , sn from ZN , if the shuf-
fling party can find t1, t2, . . . , tn in ZN such that

(6)
∑

i

siD(ci) =
∑

i

tiD(c′i) (mod N)

with a probability larger than 2−α, then the shuffling party can find an n × n
invertible matrix P such that

(7) [D(c′1), D(c′2), . . . , D(c′n)]t = P [D(c1), D(c2), . . . , D(cn)]t (mod N) ,

(8) [t1, t2, . . . , tn]t = P−1 [s1, s2, . . . , sn]t (mod N).

Corollary 4.6. The matrix P in Proposition 4.5 is unique.

Proof. If there are two different matrices satisfying Equation (7), then one
can find a non-trivial linear relation of {m1,m2, . . . , mn}. ¤

5. Verification protocol

In this section, we describe our protocol and prove that an honest shuffling
party always can pass the verification.

Suppose that a shuffling party receives {c1, c2, . . . , cn} and the corresponding
output is {c′1, c′2, . . . , c′n}. We let mi = D(ci) and m′

i = D(c′i) for i = 1, 2, . . . , n.
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We also suppose that di = D̃(ci) and d′i = D̃(c′i) are published by an authorized
party. The chosen basis for Ẽ and D̃ does not have to be published since
D̃ is used only for the implementation of the protocol and we just need its
multiplicatively homomorphic property:

5.1. Protocol

1. The verifier randomly chooses sij , 1 ≤ i < j ≤ n, from {0, 1, . . . , 2α−1}
and publishes them.

2. The shuffling party shows, in a zero knowledge manner, that he knows
tij for 1 ≤ i < j ≤ n and ri, i = 1, 2, . . . , n, such that
∏

i

c′j =
∏

i

ciE(0, ri) (mod N2) ,(9)

∏

i<j

(c′ic
′
j)

tij =
∏

i<j

(cicj)sij (E(0, ri)E(0, rj))tij (mod N2) ,(10)

∏

i<j

(c′
d′j
i c′d

′
i

j )tij =
∏

i<j

(cdj

i cdi
j )sij (E(0, ri)d′j E(0, rj)d′i)tij (mod N2) .(11)

5.1.1. Implementation. The same zero-knowledge implementation used in [27]
(see Section 3) can be adopted for the implementation of our protocol due to
the fact that Equations (10), (11) are essentially the same as the equations
proved in [27] except the number of terms in each product.

Lemma 5.1. If the shuffling party is honest, then he can pass the verification.

Proof. Suppose c′i = RE(cπ(i), ri) are obtained using a permutation π ∈ Sn.
Then by taking tij = sπ(i)π(j) (sπ(j)π(i) if π(i) > π(j)) the shuffling party
can pass the verification: It is easy to check Equation (10) and we only check
Equation (11). Observe first that d′i = dπ(i) since

d′i = D̃(c′i) = D̃(cπ(i)E(0, ri)) = D̃(cπ(i)) + D̃(E(0, ri)) = D̃(cπ(i)) = dπ(i) ,

where the second last equality is valid because of Corollary 4.3. Now we finish
the proof;

∏

i<j

(
c′

d′j
i c′d

′
i

j

)tij

=
∏

i<j

(
c
dπ(j)

π(i) c
dπ(i)

π(j)

)sπ(i)π(j)
(
E(0, ri)d′j E(0, rj)d′i

)tij

=
∏

i<j

(
c
dj

i cdi
j

)sij
(
E(0, ri)d′j E(0, rj)d′i

)tij

.

¤

6. Proof of the correctness

In this section, we prove that the proposed protocol is a correct verification.
Incidence matrix plays an important role for the proof.
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6.1. Incidence matrices

We let [n] = {1, 2, . . . , n} be the set of integers from 1 to n. Let W (n) be the
incidence matrix between 1-subsets and 2-subsets of [n] ; an

(
n
1

)× (
n
2

)
matrix

of 0’s and 1’s, where the rows and columns of which are indexed by 1-subsets
and 2-subsets of [n] respectively and

(W (n))IJ =
{

1 if I ⊂ J ,
0 otherwise .

Throughout the rest of this article, let us fix an order on the set of 2-subsets
of [n] so that the first n of them are {1, 2}, {2, 3}, . . . , {n−1, n} and {n−2, n}.
We always use the fixed order on the set of 1-subsets of [n]: {1}, {2}, . . . , {n}.

The following proposition is the main tool that enables us to translate results
on the collection of messages to the collection of pairs of messages and vice
versa.

Proposition 6.1. There is an n by n invertible matrix R over ZN such that
R W (n) = [In |B] (mod N), where In is the n × n identity matrix, and B is
an n× ((

n
2

)− (
n
1

))
matrix over ZN . That is W (n) has rank n over ZN .

Proof. Suppose that the rows and columns are indexed in the orders we fixed.
Consider the series of row operations that changes the rows of W (n) into r1,
r2−r1, r3−r2 +r1, . . . , rn−rn−1 + · · ·+(−1)n−1r1, where ri is the ith row of
W (n). It is easy to see that for every i = 1, . . . , n−1, the {i, i+1}th column of
the new matrix contains only one 1 at the ith row. Moreover, the {n− 2, n}th
column is [0, . . . , 0, 1,−1, 2]t. Note that 2 is a unit in ZN since N is a product
of powers of odd primes. This enables us to multiply the inverse of 2 to the
last row and add it and its negative to the (n−1)st row and the (n−2)nd row,
respectively. The composition of series of row operations we used makes R in
the theorem. ¤

Remark 6.2. W (n) is a special case of well known incidence matrices of t-
subsets and k-subsets of [n], where t = 1, k = 2. The rank of incidence
matrices are known over Zp for a prime p (see [34, 12]): Our W (n) has full
rank n over Zp, p 6= 2. However, we use a composite number N = p q for the
modulus and that is why we need to give a proof of Proposition 6.1.

6.2. The proof

We first start with a key lemma for the proof of the correctness.

Lemma 6.3. Equations (9), (10) and (11) imply the following equations, resp-
ectively:

∑

i

mi =
∑

i

m′
i (mod N) ,(12)

∑

i<j

sij(mi + mj) =
∑

i<j

tij(m′
i + m′

j) (mod N) ,(13)
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∑

i<j

sij(mimj) =
∑

i<j

tij(m′
im

′
j) (mod N) .(14)

Proof. The modulus for the equations in the proof vary depending on which
space we are working. The modulus is N if we are working on the space of
messages, while the modulus must be N2 if we are working on the space of
ciphertexts; and we omit the modulus in the proof.

Equation (12) and (13) are immediate from the additively homomorphic
property of our encryption scheme, and we only give a careful proof of Equa-
tion (14): Assume Equation (11) is true. Since E is additively homomorphic
and ci = E(mi), c′i = E(m′

i) for i = 1, . . . , n, we can rewrite Equation (11) as
follows.

E


∑

i<j

sij(dimj + djmi)


 = E


∑

i<j

tij(d′im
′
j + d′jm

′
i)


 .

Since encryption is always one-to-one, we obtain

(15)
∑

i<j

sij(dimj + djmi) =
∑

i<j

tij(d′im
′
j + d′jm

′
i) .

Moreover, since di = D̃(ci), d′i = D̃(c′i) for i = 1, . . . , n, and D̃ is multiplica-
tively homomorphic, we can rewrite Equation (15) as follows;

D̃


∏

i<j

c
sijmj

i c
sijmi

j


 = D̃


∏

i<j

c′
tijm′

j

i c′tijm′
i

j


 .

Proposition 4.1 now implies that

D̃




∏
i<j c

sijmj

i c
sijmi

j

∏
i<j c′

tijm′
j

i c′tijm′
i

j


 = 0 ,

and we obtain ∏
i<j c

sijmj

i c
sijmi

j

∏
i<j c′

tijm′
j

i c′tijm′
i

j

= xN for some x ∈ Z∗N2

by Proposition 4.2. Let x = E(y) for y ∈ ZN then, again by the additively
homomorphic property of E, we have

∑

i<j

sij(mjmi + mimj) =
∑

i<j

tij(m′
jm

′
i + m′

im
′
j) + N · y .

Note that N · y = 0 (mod N). We finally show that Equation (14) is true. ¤

Remark 6.4. In the proof of Lemma 6.3, special properties of Paillier scheme
(Proposition 4.2 and Corollary 4.3) are essentially used.
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In the rest of the article, every equation is modulo N , the modulus of the
message space. In the following theorems and lemmas, we suppose that a shuf-
fling party can provide proofs of Equations (9), (10) and (11) with a probability
larger than 2−α.

The following theorem is immediate from Proposition 4.5 since we are as-
suming the linear ignorance condition on {mimj | 1 ≤ i < j ≤ n}. Remember
that we fix an order of 2-subsets of [n], and we follow the same order for sij ’s,
tij ’s, mimj ’s and m′

im
′
j ’s.

Theorem 6.5. There is an invertible
(
n
2

)× (
n
2

)
matrix P̃ over ZN such that

[m′
1m

′
2,m

′
2m

′
3, . . . ]

t = P̃ [m1m2,m2m3, . . . ]
t and

[t1 2, t2 3, . . . ]
t = (P̃ )−1 [s1 2, s2 3, . . . ]

t
.

Theorem 6.6. The shuffling party knows an invertible n × n matrix P over
ZN such that

[m′
1, m

′
2, . . . ,m

′
n]t = P [m1, m2, . . . ,mn]t .

Proof. By Proposition 6.1, for random s1, s2, . . . , sn, one always can find
sij ’s in ZN satisfying

∑
k∈{i,j} sij = sk for each k. We just have to solve

W (n)X = [s1, . . . , sn]t for X = [x12, x23, . . . ]t. Therefore, the existence of P
in the theorem is guaranteed by Proposition 4.5, since we assume the linear
ignorance condition on {m1, m2, . . . , mn}. ¤

We state two Lemmas whose proofs can be done by comparing coefficients
of mi’s or mimj ’s in appropriate equations.

Lemma 6.7. For any 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n,

(16) P̃{ij}{kl} = PikPjl + PilPjk .

Proof. We have m′
im

′
j =

∑
α<β P̃{ij}{αβ}mαmβ = (

∑
α Piαmα)(

∑
β Pjβmβ) ,

where the first and the second equations are from Theorem 6.5 and Theorem 6.6
respectively. We now compare the coefficients of mimj ’s to finish the proof.
Remember that we are assuming the linear ignorance condition on the set
{mimj | i < j} and this makes comparing the coefficients of mimj ’s be a valid
argument. ¤
Lemma 6.8. When tij’s are the numbers provided by the shuffling party for
given sij’s, the following equations are satisfied for any i,j and k.

∑

k∈{α,β}
sαβ =

∑

α<β

(Pαk + Pβk)tαβ ,(17)

(W (n)P̃ ){k}{i j} = Pik + Pjk .(18)

Proof. If we rewrite Equation (13) using matrix P , then we have the following:

∑

α<β

sαβ(mα + mβ) =
∑

α<β

tαβ

(
n∑

γ=1

Pαγmγ +
n∑

γ=1

Pβγmγ

)
.



782 SOOJIN CHO AND MANPYO HONG

Equation (17) can be obtained by comparing the coefficients of each mk’s.
Note here that we are assuming the linear ignorance condition on {m1, . . . , mn}
and this makes comparing the coefficients of mk’s be a valid argument.

We have tαβ = (P̃ )−1[s12, s23, . . . ]t because of Theorem 6.5. Hence, the right
hand side of Equation (17) is the kth row of A(P̃ )−1[s12, s23, . . . ]t, where A is
an n× (

n
2

)
matrix (with the same index sets as W (n)’s), whose (k, {αβ})-entry

is given by Pαk + Pβk. The left hand side of Equation (17) is the kth row of
W (n)[s12, s23, . . . ]t. We, therefore, can conclude that W (n)P̃ = A since sij are
randomly chosen numbers by the verifier. ¤

Theorem 6.9. The matrix P given in Theorem 6.6 satisfies the following
equations, and is a permutation matrix with high probability as a consequence.

For all i,

n∑
α=1

Piα = 1 ,(19)

for all i < j and k, Pik + Pjk = Pik

∑

α6=k

Pjα + Pjk

∑

α6=k

Piα .(20)

Proof. Equation (19) is immediate from Equation (12) and Theorem 6.6:

m1 + · · ·+ mn = m′
1 + · · ·+ m′

n = (
∑
α

P1α)m1 + · · ·+ (
∑
α

Pnα)mn .

For any i < j and k, since

Pik + Pjk = Pik

∑

α 6=k

Pjα + Pjk

∑

α 6=k

Piα = Pik(1− Pjk) + Pjk(1− Pik) ,

we have 2PikPjk = 0. In our case, this implies that either Pik = 0 or Pjk = 0
since the factorization of modulus N is assumed to be very hard and, it is not
known to the shuffling parties or N is a prime. Therefore, there can be at most
one non-zero entry in each column of P . Since P is invertible, P can not have
a zero column and each column must have exactly one non-zero entry, that is
there are exactly n non-zero entries in P . Since there can be no zero row in
P there must be exactly one non-zero entry in each row, and Equation (19)
proves that each non-zero entry must be 1. ¤

Remark 6.10. Two conditions in Theorem 6.9 are sufficient for a matrix P to
be a permutation matrix if the modulus is a prime as in the case of modified
ElGamal. Therefore, our work can also be thought as an extension of the work
by Furukawa-Sako in [14].

Through the arguments of Theorem 6.5, Theorem 6.6 and Theorem 6.9, we
have shown the following.

Theorem 6.11. Suppose that a shuffling party can provide proofs of Equa-
tions (9), (10) and (11) with a probability larger than 2−α, and assume the
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linear ignorance condition for the sets {m1,m2, . . . , mn} and {mimj | i < j}.
Then there is a permutation matrix P such that

[m′
1, m

′
2, . . . ,m

′
n]t = P [m1, m2, . . . ,mn]t .

7. Computationally improved protocol

In the previous sections, we proved that the proposed protocol is a valid
verification that can be implemented with reduced number of communication
rounds between the shuffling party and the verifier than in the protocol by
Peng et al. [27]. However, the proposed protocol has a significant draw-back
in computation complexity. The complexity of our protocol is O(n2) while the
one by Peng et al. has O(n) as its computational complexity. This is because
we use all

(
n
2

)
2-subsets of [n] for the verification. We, however, can restrict

the number of nonzero sij ’s so that we obtain a linear complexity: We must be
careful to choose nonzero sij ’s so that we do not lose the balance of i’s, though.

7.1. Designs

A good method to choose {i, j}’s for nonzero sij ’s is to use λ-designs. We
refer [2, 20] for more detailed argument on design theory.

Definition. For integers 0 ≤ t < k < n and 0 < λ, a t-(n, k, λ) design is
a collection B of k-subsets of [n] called blocks, with the property that every
t-subset of [n] is contained in precisely λ blocks.

The following proposition gives a necessary condition for the existence of a
t-(n, k, λ) design.

Proposition 7.1 (Theorem 19.2 in [20]). If B is a t-(n, k, λ) design, then the
number of blocks is

|B| = λ
(
n
t

)
(
k
t

) .

What we need is a collection of 2-subsets of [n] in which 1-subsets of [n] are
evenly distributed, that is a 1-(n, 2, λ) design for some λ. We will simply call
a 1-(n, 2, λ) design a λ-design.

Corollary 7.2. If B is a λ-design, then either λ or n is an even integer.

Proof. If B is a λ-design, then |B| = λn
2 must be an integer by Proposition 7.1.

¤

Suppose that n is even, then by pairing elements in [n] in λ different ways
we can easily construct a λ-design. When n is odd and λ is even, we can
consider λ-copies of [n] and in each copy make n−1

2 with one element left. We
can assume that λ elements left from each copy are all distinct and can pair
them up to make a λ-design. This proves the following easy theorem.
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Theorem 7.3. A λ-design exists if and only if either λ or n is an even integer.

In conclusion, when n is even we easily can construct a λ-design for any
choice of λ and the number of blocks is λn

2 , and when n is odd we can construct
a λ-design for even λ.

7.1.1. Improved protocol. If the number n of messages is odd, then we always
can add one more dummy message as the last one and we may assume that n
is even.

1. The verifier construct a λ-design B, randomly chooses sij , {i, j} ∈ B,
from {0, 1, . . . , 2α − 1} and publishes them.

2. The shuffling party shows, in a zero knowledge manner, that he knows
tij for 1 ≤ i < j ≤ n and ri, i = 1, 2, . . . , n, such that Equations (9),
(10) and (11) are satisfied.

By employing the idea of λ-designs, we still can keep the main idea of our
protocol and get a reasonable computation cost with a complexity in the class
O(n) also.

7.2. Comparison

The computation cost for a verification process depends on the method of
implementation of zero-knowledge proofs and the encryption scheme. Since our
protocol is based on the Pillier encryption and the equations to be proved by
the shuffling party are essentially the same as the ones in [27], we can directly
employ the implementation of zero-knowledge proofs proposed in [27] for the
proofs of (9), (10) and (11). Moreover, we can estimate the computation cost
for the verification by employing the same method Peng et al. used in [27] and
compare the cost of our protocol with Peng et al.’s.

There are more recent works other than [27], where better efficiencies has
been achieved ([19, 33]) in computation. In [19], the comparison in efficiency
has been made among verification protocols including the one by Peng et al.
[27] and the one by Groth and Lu [19]. We, hence, compare the efficiency of
our protocol with Peng et al.’s only.

As in [27], we assume that the cost of exponentiation with x-bit exponent is
1.5x, and the cost of the product of n exponentiations with x-bit exponent is
at most n + 0.5nx.

The cost of computing di’s and d′i’s is about
(

4n
3 + 8γ

3

)
full length exponen-

tiations, where γ = n
|N | , since they are decryption processes in Paillier scheme.

Assuming that α = 20 and N is a 1024 bit number (|N | = 1024), A rough
(not sharp) upper bound for the cost of verification is 10

3 λn (full length expo-
nentiations). Therefore, the overall cost for the verification is about ( 4

3 + 10
3 λ)n

if a λ-design is employed. When λ = 1, the computational cost is not much
worse than that of Peng et al., where the number of communication round is
reduced. We did not do careful analysis on the security matter raised from the
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choice of λ, but believe that λ = 1 (or a small λ) will serve as a good param-
eter. In the following table we compare our verification with the first protocol
of Peng et al. in [27] in terms of number of full exponentiations, where we do
not include the cost for the shuffling.

Communication Cost for verification Cost for verification
rounds λ = 1 λ = 2

Peng et al. 4 < 4n < 4n
Our protocol 2 < 14n/3 < 8n

8. Final remarks

Two conditions in Theorem 6.9 are sufficient for a matrix P to be a permu-
tation matrix if the modulus is a prime as in the case of modified ElGamal.
But, when the modulus is a composite integer they do not give sufficient con-
ditions for P to be a permutation matrix. We, in Theorem 6.9, conclude P
is a permutation matrix due to hardness of factorization of N . The following
example shows that P does not have to be a permutation matrix without this
assumption on the modulus.

Example 8.1. When N = 1453 · 3019 = 4386607, the following non-permuta-
tion matrix satisfies the conditions in Theorem 6.9:

P =




271711 4114897 0 0
4114897 271711 0 0

0 0 271711 4114897
0 0 4114897 271711


 .

By defining P̃ by P̃{ij}{kl} = PikPjl+PilPjk , as in Equation (16) and provid-
ing tij ’s calculated by (P̃ )−1[s12, s23, . . . ]t , a shuffling party can pass the verifi-
cation while passing contaminated messages: [m′

1, . . . , m
′
n]t = P [m1, . . . , mn]t .

Remark 8.2. The matrix P in Example 8.1 can also pass all the verification of
Peng et al. in [27]. Peng et al., however, did not give a correct explanation
how this can happen in [27]: In their proof of the main theorem, they made
a wrong reasoning by overlooking the fact that the message space may have
composite modulus (the third paragraph in p. 197 of [27]). This can be treated
though by taking the same argument we use for the proof of the correctness of
our protocol.

We proposed a verification protocol with reduced number of rounds of com-
munications than the one in [27] where Paillier encryption is adopted. We
believe that our argument can be extended to other homomorphic encryption
schemes, like newly proposed (doubly homomorphic) encryption by [15].
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