DOI QR코드

DOI QR Code

A NOTE ON f-DERIVATIONS OF BCI-ALGEBRAS

  • Javed, Malik Anjum ;
  • Aslam, Muhammad
  • Published : 2009.07.31

Abstract

In this paper, we investigate some fundamental properties and establish some results of f-derivations of BCI-algebras. Also, we prove Der(X), the collection of all f-derivations, form a semigroup under certain binary operation.

Keywords

f-derivation;p-semisimple;BCI-algebras

References

  1. H. A. S. Abujabal and N. O. Al-shehri, Some results on derivations of BCI-algebras, Jr. of Natural sciences and Mathematics 46 (2006), no. 2, 13–19
  2. M. Aslam and A. B. Thaheem, A note on p-semisimple BCI-algebras, Math. Japon. 36 (1991), no. 1, 39–45
  3. M. Aslam, Ideal theory of BCK-algebras, Quaid-I-Azam University Islamabad, Pakistan. Ph. D. Thesis, 1992
  4. M. Daoji, BCI-algebras and Abelian groups, Math. Japon. 32 (1987), no. 5, 693–696
  5. W. A . Dudek, On BCI- algebras with condition (s), Math. Japon. 31 (1986), no. 1, 26–29
  6. C. S. Hoo, BCI- algebras with condition (s), Math. Japon. 32 (1987), no. 5, 749–756
  7. K. Iseki, On BCI-algebras, Math. Sem. Notes 8 (1980), 125–130
  8. Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), 167–176 https://doi.org/10.1016/j.ins.2003.03.001
  9. P. H. Lee and T. K. Lee, On derivations of prime rings, Chinese J. Math. 9 (1981), 107–110
  10. J. Meng, Y. B. Jun, and E. H. Roh, BCI-algebras of order 6, Math. Japon. 47 (1998), no. 1, 33–43
  11. L. Tiande and X. Changchang, p-Radical in BCI-algebras, Math. Japon. 30 (1985), no. 4, 511–517
  12. X . L. Xin, E. H. Roh, and J. C. Li , Some results on the BCI G part of algebras, Far East J. Math. Sci. SpecialVolume (Part III), (1997), 363–370
  13. J. E. Whitesitt, Boolean algebra and its Applications, New York, Dover, 1995
  14. Q. Zhang, Some other characterizations of p semisimple BCI-algebras, Math. Japon. 36 (1991), no. 5, 815–817
  15. E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100
  16. J. M. Zhan and Y. L. Liu, On f derivation of BCI-algebras, Int. Jour. Math. Mathematical Sciences. 11 (2005), 1675–1684 https://doi.org/10.1155/IJMMS.2005.1675

Cited by

  1. On Generalized Derivations ofBCI-Algebras and Their Properties vol.2014, 2014, https://doi.org/10.1155/2014/207161
  2. REGULARITY OF GENERALIZED DERIVATIONS IN BCI-ALGEBRAS vol.31, pp.2, 2016, https://doi.org/10.4134/CKMS.2016.31.2.229
  3. fq-Derivations ofG-Algebra vol.2016, 2016, https://doi.org/10.1155/2016/9276096