Estimation of Probability Distribution Fit for Fatigue Crack Propagation Life of AZ31 Magnesium Alloy

AZ31 마그네슘합금의 피로균열진전수명에 적합한 확률분포 평가

  • 최선순 (삼육대학교 카메카트로닉스학과)
  • Published : 2009.08.01


The variables relating to the fatigue behavior have uncertainty and are random. The fatigue crack propagation is, thus, stochastic in nature. In this study, fatigue experiments are performed on the specimen of the magnesium alloy AZ31. The data of the fatigue life are scattered even in the same experimental condition. It is necessary to determine the probability distribution of the fatigue crack propagation life for the reliability analysis as well as the design and maintenance of structural components. Therefore the statistics and the probability distribution for the fatigue crack propagation life are investigated and the best fit probability distribution of that is proposed in this paper.


Fatigue Crack Propagation Life;Magnesium Alloy;Probability Distribution


  1. Keiro Tokaji, Masaki Nakajima, Yoshihiko Uematsu, 2009, 'Fatigue Crack Propagation and Fracture Mechanisms of Wrought Magnesium Alloys in Different Environments,' International Journal of Fatigue, In Press, Available online
  2. Yin, S.M., Yang, H.J., Li, S.X., Wu, S.D. and Yang, F., 2008, 'Cyclic Deformation Behavior of as- Extruded Mg-3%Al-1%Zn,' Scripta Materialia, Vol. 58, pp. 751-754
  3. Sivapragash, M., Lakshminarayanan, P.R. and Karthikeyan, R., 2008, 'Fatigue Life Prediction of ZE41A Magnesium Alloy Using Weibull Distribution,' Materials and Design, Vol.29, pp. 1549-1553
  4. Teng-Shih Shih, Wen-Sun Liu and Yeong-Jern Chen, 2002, 'Fatigue of as-Extruded AZ61A Magnesium Alloy,' Materials Science & Engineering(A), Vol. 325, pp. 152-162
  5. Sotomi Ishihara, Zhenyu Nan, Takahito Goshima, 2007, 'Effect of Microstructure on Fatigue Behavior of AZ31 Magnesium Alloy,' Materials Science & Engineering(A), Vol. 468-470, pp. 214-222
  6. Yang, F., Yin, S.M., Li, S.X. and Zhang, Z.F., 2008, 'Crack Initiation Mechanism of Extruded AZ31 Magnesium Alloy in the very High Cycle Fatigue Regime,' Materials Science & Engineering(A), Vol. 491, pp. 131-136
  7. Zainuddin Bin Sajuri, Yukio Miyashita, Yasunobu Hosokai and Yoshiharu Mutoh, 2006, 'Effect of Mn Content and Texture on Fatigue Properties of as-Cast and Extruded AZ61 Magnesium Alloys,' International Journal of Mechanical Sciences, Vol. 48, pp. 198-209
  8. Mitsutoshi KAMAKURA, Keiro TOKAJI and Yoshihiko UEMATSU, 2006, 'Microstructure and Fatigue Behaviour of Mg2Si-Dispersed Magnesium Alloys Produced by Solid-State Synthesis,' Journal of the Society of Materials Science, Japan, Vol. 55, No. 1, pp. 55-60
  9. SRIVATSAN, T.S., Li WEI, CHANG, C.F., 1996, 'The Cyclic Strain Resistance, Fatigue Life and Final Fracture Behavior of Magnesium Alloys,' Engineering Fracture Mechanics, Vol. 56, No. 6, pp. 735-758
  10. Begum, S., Chen, D.L., Xu, S. and Luo, Alan A., 2009, 'Low Cycle Fatigue Properties of an Extruded AZ31 Magnesium Alloy,' International Journal of Fatigue, Vol. 31, pp. 726-735
  11. Hasegawa, S., Tsuchida, Y., Yano, H. and Matsui, M., 2007, 'Evaluation of Low Cycle Fatigue Life in AZ31 Magnesium Alloy,' International Journal of Fatigue, Vol. 29, pp. 1839-1845
  12. Murugan, G., Raghukandan, K., Pillai, U.T.S., Pai, B.C. and Mahadevan, K., 2008, 'High Cycle Fatigue Characteristics of Gravity Cast AZ91 Magnesium Alloy Subjected to Transverse Load,' Materials and Design, In Press, Available online
  13. Md. Shahnewaz Bhuiyan, Yoshiharu Mutoh, Tzutomu Murai and Shinpei Iwakami, 2008, 'Corrosion Fatigue Behavior of Extruded Magnesium Alloy AZ61 Under Three Different Corrosive Environments,' International Journal of Fatigue, Vol. 30, pp. 1756-1765
  14. Ishihara, S., Notoya, H., Okada, A., Nan, Z.Y. and Goshima, T., 2008, 'Effect of Electroless-Ni-Plating on Corrosion Fatigue Behavior of Magnesium Alloy,' Surface & Coating Technology, Vol. 202, pp. 2085-2092
  15. Tokaji, K., Kamakura, M., Ishiizumi, Y. and Hasegawa, N., 2004, 'Fatigue Behaviour and Fracture Mechanism of a Rolled AZ31 Magnesium Alloy,' International Journal of Fatigue, Vol. 26, pp. 1217-1224
  16. Yongming Liu, Sankaran Mahadevan, 2009, 'Probabilistic Fatigue Life Prediction Using an Equivalent Initial Flaw Size Distribution,' International Journal of Fatigue, Vol. 31, pp. 476-487
  17. Venkateswaran, P., Ganesh, S., Sundara Raman, Pathak, S.D., Miyashita, Y. and Mutoh, Y., 2004, 'Fatigue Crack Growth Behaviour of a Die-Cast Magnesium Alloy AZ91D,' Materials Letters, Vol. 58, pp. 2525-2529
  18. Ho-Kyung Kim, Young-In Lee and Chin-Sung Chung, 2005, 'Fatigue Properties of Fine-Grained Magnesium Alloy Produced by Equal Channel Angular Pressing,' Scripta Materialia, Vol. 52, pp. 473-477
  19. Sotomi ISHIHARA, Arthur J. MCEVILY, Masanori SATO and Hiroshi SHIBATA, Takahito GOSHIMA, Masayoshi SHIMIZU, 2008, 'Fatigue Lives and Crack Propagation Behavior of the Extruded Magnesium Alloy Processed under Various Extrusion Conditions,' Journal of Solid Mechanics and Materials Engineering, Vol. 2, No. 4, pp. 487-495
  20. 'Standard Test Method for Measurement of Fatigue Crack Growth Rates,' ASTM E647-00.
  21. Frank Grooteman, 2008, 'A Stochastic Approach to Determine Lifetimes and Inspection Schemes for Aircraft Components,'International Journal of Fatigue, Vol. 30, pp. 138-149
  22. Bryan Dodson, 2006, The Weibull Analysis Handbook, ASQ Quality Press, Wisconsin, pp. 115-117
  23. Zainuddin Bin SAJURI, Yukio MIYASHITA and Yoshiharu MUTOH, 2002, 'Fatigue Characteristics of an Extruded AZ61 Magnesium Alloy,' Journal of Japan Institute of Light Metals, Vol. 52, N0. 4, pp. 161-166
  24. Zenner, H. and Renner, F., 2002, 'Cyclic Material Behaviour of Magnesium Die Castings and Extrusions,' International Journal of Fatigue, Vol. 24, pp. 1255-1260
  25. Eliezer, A., Medlinsky, O., Haddad, J. and Ben-Hamu, G., 2008, 'Corrosion Fatigue Behavior of Magnesium Alloys Under Oil Environments,' Materials Science & Engineering(A), Vol. 477, pp. 129-136
  26. Nan, Z.Y., Ishihara, S. and Goshima, T., 2008, 'Corrosion Fatigue Behavior of Extruded Magnesium Alloy AZ31 in Sodium Chloride Solution,' International Journal of Fatigue, Vol. 30, pp. 1181-1188
  27. Yasuo Kobayashi, Toshinori Shibusawa, Keisuke Ishikawa, 1997, 'Environmental Effect of Fatigue Crack Propagation of Magnesium Alloy,' Materials Science & Engineering(A), Vol. 234-236, pp. 220-222
  28. Chin-Sung Chung, Duk-Kyu Chun and Ho-Kyung Kim, 2005, 'Fatigue Properties of Fine Grained Magnesium Alloys after Severe Plastic Deformation,' Journal of Mechanical Science and Technology(KSME Int. J.), Vol. 19, No. 7, pp. 1441-1448
  29. Xu, D.X., Liu, L., Xu, Y.B. and Han, E.H., 2007, 'The Fatigue Crack Propagation Behavior of the Forged Mg-Zn-Y-Zr Alloy,' Journal of Alloys and Compounds, Vol. 431, pp. 107-111

Cited by

  1. A Study of Probabilistic Fatigue Crack Propagation Models in Mg-Al-Zn Alloys Under Different Specimen Thickness Conditions by Using the Residual of a Random Variable vol.36, pp.4, 2012,
  2. Variation of Material Characteristics of a Hot-formed AZ31 Magnesium Alloy vol.37, pp.7, 2013,
  3. Estimation of Empirical Fatigue Crack Propagation Model of AZ31 Magnesium Alloys under Different Specimen Thickness Conditions vol.15, pp.2, 2014,
  4. Probabilistic Characteristics of Fatigue Behavior Parameter of Paris-Erdogan Law in Mg-Al-Zn Alloy vol.35, pp.4, 2011,