DOI QR코드

DOI QR Code

Robust Structural Optimization Using Gauss-type Quadrature Formula

가우스구적법을 이용한 구조물의 강건최적설계

  • 이상훈 (한국원자력연구원) ;
  • 서기석 (한국원자력연구원, 핵주기시스템공학기술개발부) ;
  • ;
  • Published : 2009.08.01

Abstract

In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the tensor product quadrature (TPQ) formula and the univariate dimension reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty.

References

  1. Taguchi, G. and Wu, Y., 1980, Introduction to Off-line Quality Control, Central Japan Quality Control Association, Nagoya, Japan
  2. Phadke, M. S., 1995, Quality Engineering Using Robust Design, Prentice Hall, Upper Saddle River, NJ, USA
  3. Sundaresan, S., Ishii, K. and Houser, D. R., 1995, 'A Robust Optimization Procedure with Variations on Design Variables and Constraints,' Engineering Optimization Vol.24, pp. 101~117 https://doi.org/10.1080/03052159508941185
  4. Han, J. S. and Kwak, B. M., 2004, 'Robust Optimization Using a Gradient Index: MEMS Applications,' Structural and Multidisciplinary Optimization, Vol. 27, pp. 469~478 https://doi.org/10.1007/s00158-004-0410-3
  5. Jung, D. H. and Lee, B. C., 2002, 'Development of a simple and efficient method for robust optimization,' International Journal for Numerical Methods in Engineering, Vol. 53, pp. 2201~2215 https://doi.org/10.1002/nme.383
  6. Chen, W., Allen, J. K., Tsui, K. L. and Mistree, F., 1996, 'Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors,' Journal of Mechanical Design, Vol. 118, pp. 478~485 https://doi.org/10.1115/1.2826915
  7. Abramowitz, M. and Stegun, I. A., 1965, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover, New York
  8. Krylov, V. I., 1962, Approximate Calculation of Integrals. Translated by A. H. Stroud, Macmillan, New York.
  9. Taguchi, G., 1978, Performance Analysis Design, International Journal of Production Research, Vol. 16, pp.521~530. https://doi.org/10.1080/00207547808930043
  10. D'Errico, J. R. and Zaino, N. A., 1988, 'Statistical Tolerancing Using a Modification of Taguchi's Method,' Technometrics, Vol. 30, pp. 397~405 https://doi.org/10.2307/1269802
  11. Seo, H. S. and Kwak, B. M., 2002, 'Efficient Statistical Tolerance Analysis for General Distributions Using Three-Point Information,' International Journal of Production Research, Vol. 40, pp. 931~944 https://doi.org/10.1080/00207540110095709
  12. Lee, S. H., Choi, H. S. and Kwak, B. M., 2008, 'Multi-Level Design of Experiments for Statistical Moment and Probability Calculation,' Structural and Multidisciplinary Optimization, Vol. 37, pp. 57~70. https://doi.org/10.1007/s00158-007-0215-2
  13. Lee, S. H. and Kwak, B. M., 2006, 'Response Surface Augmented Moment Method for Efficient Reliability Analysis,' Structural Safety, Vol. 28, pp. 261~272 https://doi.org/10.1016/j.strusafe.2005.08.003
  14. Rosenblueth, E., 1981, 'Two Point Estimates in Probabilities,'Applied Mathematical Modeling, Vol. 5, pp. 329~335 https://doi.org/10.1016/S0307-904X(81)80054-6
  15. Hong, H. P., 1998, 'An Efficient Point Estimate Method for Probabilistic Analysis,' Reliability Engineering and Systems Safety, Vol. 59, pp. 261~267 https://doi.org/10.1016/S0951-8320(97)00071-9
  16. Harr, M. E., 1989, 'Probability Estimate for Multivariate Analysis,' Applied Mathematical Modeling, Vol. 13, pp. 313~318 https://doi.org/10.1016/0307-904X(89)90075-9
  17. Lee, S. H., Chen, W. and Kwak, B. M., 2008, 'Robust Design with Arbitrary Distributions Using Gauss-type Quadrature Formula,' Structural and Multidisciplinary Optimization, DOI: 10.1007/s00158- 008-0328-2 https://doi.org/10.1007/s00158-008-0328-2
  18. Evans, D. H., 1967, 'An application of numerical integration techniques to statistical tolerancing,' Technometrics, Vol. 9, pp. 441~456 https://doi.org/10.2307/1266512
  19. Rahman, S. and Xu, H., 2004. 'A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics,' Probabilistic Engineering Mechanics, Vol. 19, pp. 393~408 https://doi.org/10.1016/j.probengmech.2004.04.003
  20. Xu, H. and Rahman, S., 2004, 'A Generalized Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics,' International Journal for Numerical Methods in Engineering, Vol. 61, pp. 1992~2019 https://doi.org/10.1002/nme.1135
  21. Lee, S. H. and Chen, W., 2008, 'A Comparative Study of Uncertainty Propagation Methods for Black-Box Type Problems,' Structural and Multidisciplinary Optimization, Vol. 37, pp. 239~253 https://doi.org/10.1007/s00158-008-0234-7
  22. Hahn, G. J. and Shapiro, S. S., 1967, Statistical Models in Engineering, Wiley, New York
  23. Chen, S., Lee, S. H. and Chen, W. 2009 'Level Set Based Robust Shape and Topology Optimization Under Random Field Uncertainties,' Proceedings of ASME 2009 International Design Engineering Technical Conferences, August 30 - September 2, 2009, San Diego, California, USA
  24. Wang, M. Y., Wang, X. and Guo, D., 2003, 'A Level Set Method for Structural Topology Optimization,' Computer Methods in Applied Mechanics and Engineering, Vol. 192, pp. 227~246 https://doi.org/10.1016/S0045-7825(02)00559-5
  25. Ghanem, R.G. and Spanos, P.D., 1991, Stochastic Finite Element Analysis, A Spectral Approach, New York: Springer-Verlag