DOI QR코드

DOI QR Code

Stability of Quartic Mappings in Non-Archimedean Normed Spaces

Mirmostafaee, Alireza Kamel

  • Received : 2008.05.20
  • Accepted : 2008.09.03
  • Published : 2009.06.30

Abstract

We establish a new method to prove Hyers-Ulam-Rassias stability of the quartic functional equation f(2x + y) + f(2x - y) + 6f(y) = 4[f(x + y) + f(x - y) + 6f(x)] in non-Archimedean normed linear spaces.

Keywords

quartic functional equation;Hyers-Ulam-Rassias stability;non-Archimedean normed spaces

References

  1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  2. L. Cadariu, Fixed points in generalized metric space and the stability of a quartic functional equation, Bul. Stiint. Univ. Politeh. Timis. Ser. Mat. Fiz., 50(64)(2)(2005), 25-34.
  3. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
  4. K. Hensel, Uber eine neue Begrundung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein, 6(1897), 83-88.
  5. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., 27(1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  6. D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
  7. S. -M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
  8. A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academic Publishers, Dordrecht, 1997.
  9. H. -M. Kim, On the stability for mixed type of quartic and quadratic functional equation, J. Math. Anal. Appl., 324(2006), 358-372. https://doi.org/10.1016/j.jmaa.2005.11.053
  10. S. H. Lee, S. M. Im and I. S. Hwang, Quartic functional equations, J. Math. Anal. Appl., 307(2)(2005), 387-394. https://doi.org/10.1016/j.jmaa.2004.12.062
  11. A. K. Mirmostafaee, M. Mirzavaziri and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, 159(2008), 730-738. https://doi.org/10.1016/j.fss.2007.07.011
  12. A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, 159(2008), 720-729. https://doi.org/10.1016/j.fss.2007.09.016
  13. M. S. Moslehian and Th. M. Rassias, Stability of functional equations in non-Archimedean spaces Appl. Anal. Discrete Math., 1(2007), 325-334. https://doi.org/10.2298/AADM0702325M
  14. L. Narici and E. Beckenstein, Strange terrain-non-Archimedean spaces, Amer. Math. Monthly, 88(9)(1981), 667-676. https://doi.org/10.2307/2320670
  15. A. Najati, On the stability of a quartic functional equation, J. Math. Anal. Appl., 340(1)(2008), 569-574. https://doi.org/10.1016/j.jmaa.2007.08.048
  16. C. Park, On the stability of the orthogonally quartic functional equation Bull. Iranian Math. Soc., 31(1)(2005), 63-70.
  17. J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser. III, 34(54)(2)(1999), 243-252.
  18. Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62(1)(2000), 23-130. https://doi.org/10.1023/A:1006499223572
  19. Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003.
  20. S. M. Ulam, Problems in Modern Mathematics (Chapter VI, Some Questions in Analysis: $\S1$, Stability), Science Editions, John Wiley & Sons, New York, 1964.

Cited by

  1. Solutions and the Generalized Hyers-Ulam-Rassias Stability of a Generalized Quadratic-Additive Functional Equation vol.2011, 2011, https://doi.org/10.1155/2011/326951
  2. Hyers-Ulam Stability of Cubic Mappings in Non-Archimedean Normed Spaces vol.50, pp.2, 2010, https://doi.org/10.5666/KMJ.2010.50.2.315
  3. Stability of Cauchy–Jensen type functional equation in generalized fuzzy normed spaces vol.62, pp.8, 2011, https://doi.org/10.1016/j.camwa.2011.07.072
  4. Functional inequalities in non-Archimedean Banach spaces vol.23, pp.10, 2010, https://doi.org/10.1016/j.aml.2010.06.005
  5. APPROXIMATELY QUINTIC AND SEXTIC MAPPINGS ON THE PROBABILISTIC NORMED SPACES vol.49, pp.2, 2012, https://doi.org/10.4134/BKMS.2012.49.2.339
  6. On the stability of pexider functional equation in non-archimedean spaces vol.2011, pp.1, 2011, https://doi.org/10.1186/1029-242X-2011-17