DOI QR코드

DOI QR Code

Almost Periodic Processes in Ecological Systems with Impulsive Perturbations

Stamov, Gani Trendafilov

  • Received : 2008.05.29
  • Accepted : 2008.12.26
  • Published : 2009.06.30

Abstract

In the present paper we investigate the existence of almost periodic processes of ecological systems which are presented with nonautonomous N-dimensional impulsive Lotka Volterra competitive systems with dispersions and fixed moments of impulsive perturbations. By using the techniques of piecewise continuous Lyapunov's functions new sufficient conditions for the global exponential stability of the unique almost periodic solutions of these systems are given.

Keywords

almost periodic solution;impulsive competitive systems

References

  1. Ahmad, S. and Lazer, A. C., Necessary and sufficient average growth in a Lotka-Volterra system, Nonlinear Analysis, 34(1998).
  2. Ahmad, S. and Lazer, A. C., Average Conditions for Global Asymptotic Stability in a Nonautonomous Lotka-Volterra System, Nonlinear Analisys, 40(2000), 37-49. https://doi.org/10.1016/S0362-546X(00)85003-8
  3. Ahmad, S. and Stamova, I. M., Partial Persistence and Extinction in N-dimensional Competitive Systems, Nonlinear Analysis: RWA, 60(2005), 821-836. https://doi.org/10.1016/j.na.2004.04.013
  4. Bainov, D. D., Myshkis, A. D. and Stamov, G. T., Dichotomies and Almost Periodicity of the Solutions of Systems of Impulsive Differential Equations, Dynamic Systems and Applications, 5(1996), 145-152.
  5. Butler, G., Freedman, H. I. and Waltman, P., Uniformly persistent systems, Proc. AMS, 96(1986).
  6. Hofbauer J. and Sigmund, K., The Theory of Evolution and Dinamical Systems, Cambridge Univ. Press, New York, 1988.
  7. Hutson, V. and Schmitt, K., Permanence and the Dynamics of Biological Systems, Math. Biosci., 111(1992).
  8. Lakshmikantham, V., Bainov D. D. and Simeonov, P. S., Theory of Impulsive Differential Equations, World Scientific, Singapore, New Jersey, London, 1989.
  9. Lisena, B., Global Stability in Competitive Periodic Systems, Nonlinear Anallysis: RWA, 5(2004), 613-627. https://doi.org/10.1016/j.nonrwa.2004.01.002
  10. Lisena, B., Global Attractive Periodic Models of Predator-Prey Type, Nonlinear Analysis: RWA, 6(2005), 133-144. https://doi.org/10.1016/j.nonrwa.2004.04.003
  11. Mil'man V. D. and Myshkis, A. D., On the Stability of Motion in the Presence of Impulses, Siberian Mathematical Journal, 1(1960), 233-237 (in Russian).
  12. Redheffer, R., Lotka-Volterra Systems with Constant Interaction Coefficients, Nonlinear Analysis, 46(2001).
  13. Samoilenko, A. M. and Perestyuk, N. A., Differential Equations with Impulse Effect, World Scientific, Singapore, 1995.
  14. Stamov, G. T., Separated and Almost Periodic Solutions for Impulsive Differential Equations, Note di Matematica, 20(2000/2001), 105-113.
  15. Stamov, G. T., Existence of Almost Periodic Solutions for Strong Stable Impulsive Differential Equations, IMA J. Math. Control, 18(2001), 153-160. https://doi.org/10.1093/imamci/18.2.153
  16. Stamov, G. T., Lyapunov's Functions for Existence of Almost Periodic Solutions of Impulsive Differential Equations, Adv. Studies in Contenmporary Math., 74(2004), 45-56.
  17. Stamov, G. T., Impulsive Cellular Networks and Almost Periodicity, Procc. of the Japan Akademy, 80(2004), 198-203.
  18. Takeuchi, Y., Global Dynamical Properties of Lotka-Volterra Systems, World Scientific, Singapore, 1996.
  19. Tineo, A., Necessary and Sufficient Conditions for Extinction of one Species, Advanced Nonlinear Studies, 5(2005), 57-71.
  20. Xinzhu, M., Almost Periodic Solution for a Class of Lotka-Volterra Type N-species Evological Systems with Time Delay, J. Syst. Science and Complexit., 18(2005), 488-497.
  21. Zanolin, F., Permanence and Positive Periodic Solutions for Kolmogorov Competing Species Systems, Results Math., 21(1992).

Cited by

  1. Complex Dynamic Behaviors of an Impulsively Controlled Predator-prey System with Watt-type Functional Response vol.56, pp.3, 2016, https://doi.org/10.5666/KMJ.2016.56.3.831