Kyungpook Mathematical Journal
- Volume 49 Issue 3
- /
- Pages.419-424
- /
- 2009
- /
- 1225-6951(pISSN)
- /
- 0454-8124(eISSN)
DOI QR Code
On the Mordell-Weil Groups of Jacobians of Hyperelliptic Curves over Certain Elementary Abelian 2-extensions
- Moon, Hyun-Suk (Department of Mathematics, College of Natural Sciences, Kyungpook National University)
- Received : 2008.02.08
- Accepted : 2008.04.17
- Published : 2009.09.30
Abstract
Let J be the Jacobian variety of a hyperelliptic curve over
Keywords
Mordell-Weil groups;hyperelliptic curves
File
References
- G. Frey and M. Jarden, Approximation theory and the rank of abelian varieties over large algebraic fields, Proc. London Math. Soc., 28(1974), 112-128. https://doi.org/10.1112/plms/s3-28.1.112
- G. Faltings, Endlichkeitssatze fur abelsche Varietaten uber Zahlkorpern, Invent. Math., 73(3)(1983), 349-366. https://doi.org/10.1007/BF01388432
- G. Faltings, Erratum: "Finiteness theorems for abelian varieties over number fields", Invent. Math., 75(2)(1984), 381. https://doi.org/10.1007/BF01388572
- H. Imai, On the rational points of some Jacobian varieties over large algebraic number fields, Kodai Math. J., 3(1980), 56-58. https://doi.org/10.2996/kmj/1138036119
- S. Ohtani, On certain closed normal subgroups of free profinite groups of countably infinite rank, Comm. Algebra, 32(2004), 3257-3262. https://doi.org/10.1081/AGB-120039290
- K. Ribet, Torsion points of abelian varieties in cyclotomic extensions, appendix to N. Katz and S. Lang, Finiteness theorems in geometric classfield theory, Enseign. Math., (2) 27(3-4)(1981), 285-319.
- S. Lang, Fundamentals of Diophantine Geometry, Springer-Verlag, 1983.
-
J. Top, A remark on the rank of Jacobians of hyperelliptic curves over
$\mathbb{Q}$ over certain elementary Abelian 2-extension, Tohoku Math. J., 40(1988), 613-616. https://doi.org/10.2748/tmj/1178227925
Cited by
- The Rank of Jacobian Varieties over the Maximal Abelian Extensions of Number Fields: Towards the Frey–Jarden Conjecture vol.55, pp.04, 2012, https://doi.org/10.4153/CMB-2011-140-5