DOI QR코드

DOI QR Code

Some Results of QF Rings

  • Jun, Dong (The Basic Courses Department of Lanzhou Polytechnic College)
  • Received : 2006.11.27
  • Accepted : 2009.08.14
  • Published : 2009.09.30

Abstract

Let R be a ring. We give some new characterizations of QF under the special annihilators condition. Some known results are obtained as corollaries.

Keywords

P-injective ring;mininjective ring;special annihilators;QF-ring

References

  1. W. K. Nicholson and M. F. Yousif, Mininjective rings., J. Algebra 187(1997), 548-578. https://doi.org/10.1006/jabr.1996.6796
  2. W. K. Nicholson, J. K. Park and M. F. Yousif, Extensions of simple-injective rings., Comm. Algebra, 28(10)(2000), 4665-4675. https://doi.org/10.1080/00927870008827111
  3. T. Nakayama, On Frobenius Rings. II, Ann. math, 42(1)(1941), 1-21. https://doi.org/10.2307/1968984
  4. C. Faith and D. V. huyhn, When self-injective rings are QF: A report on a problem, Journal of Algebra and Its Application, 1(1)(2002), 75-105. https://doi.org/10.1142/S0219498802000070
  5. W. K. Nicholson, and M. F. Yousif, On Quasi-Frobenius Rings, In: Gray F. Birkenmeier, Jae Keol Park and yong Soo Park, International Symposium on Ring Theory, Birkhauser, Boston. basel. Berlin, 1999.
  6. W.K. Nicholson, and M.F. Yousif, Quasi-Frobenius Rings. Cambridge Tracts in Mathematics 158, Cambridge University Press, 2003.
  7. F. W. Anderson and K. R. Futter, Rings andModules Categories. New York, Springer-Verlag, 1974.
  8. K. R. Goodearl, Von Neumann regular rings. London, Pitman, 1979.
  9. Chen J. and Ding N., On general principally injective rings., Comm in Algebra, 27(1999), 2097-2116. https://doi.org/10.1080/00927879908826552
  10. E. A. Rutter, Rings with the principal extension property., Comm. Algebra, 3(3)(1975), 203-212. https://doi.org/10.1080/00927877508822043
  11. Chen. J., Li. W., On artiness of right CF rings., Comm. Algebra 32(11),(2004), 4485-4494. https://doi.org/10.1081/AGB-200034189