Some Results of QF Rings

Jun, Dong

  • Received : 2006.11.27
  • Accepted : 2009.08.14
  • Published : 2009.09.30


Let R be a ring. We give some new characterizations of QF under the special annihilators condition. Some known results are obtained as corollaries.


P-injective ring;mininjective ring;special annihilators;QF-ring


  1. W. K. Nicholson and M. F. Yousif, Mininjective rings., J. Algebra 187(1997), 548-578.
  2. W. K. Nicholson, J. K. Park and M. F. Yousif, Extensions of simple-injective rings., Comm. Algebra, 28(10)(2000), 4665-4675.
  3. T. Nakayama, On Frobenius Rings. II, Ann. math, 42(1)(1941), 1-21.
  4. C. Faith and D. V. huyhn, When self-injective rings are QF: A report on a problem, Journal of Algebra and Its Application, 1(1)(2002), 75-105.
  5. W. K. Nicholson, and M. F. Yousif, On Quasi-Frobenius Rings, In: Gray F. Birkenmeier, Jae Keol Park and yong Soo Park, International Symposium on Ring Theory, Birkhauser, Boston. basel. Berlin, 1999.
  6. W.K. Nicholson, and M.F. Yousif, Quasi-Frobenius Rings. Cambridge Tracts in Mathematics 158, Cambridge University Press, 2003.
  7. F. W. Anderson and K. R. Futter, Rings andModules Categories. New York, Springer-Verlag, 1974.
  8. K. R. Goodearl, Von Neumann regular rings. London, Pitman, 1979.
  9. Chen J. and Ding N., On general principally injective rings., Comm in Algebra, 27(1999), 2097-2116.
  10. E. A. Rutter, Rings with the principal extension property., Comm. Algebra, 3(3)(1975), 203-212.
  11. Chen. J., Li. W., On artiness of right CF rings., Comm. Algebra 32(11),(2004), 4485-4494.