DOI QR코드

DOI QR Code

On Conformally at Almost Pseudo Ricci Symmetric Mani-folds

  • De, Uday Chand (Department of Pure Mathematics, University of Calcutta) ;
  • Gazi, Abul Kalam (Department of Pure Mathematics, University of Calcutta)
  • Received : 2008.09.15
  • Accepted : 2009.03.10
  • Published : 2009.09.30

Abstract

The object of the present paper is to study conformally at almost pseudo Ricci symmetric manifolds. The existence of a conformally at almost pseudo Ricci symmetric manifold with non-zero and non-constant scalar curvature is shown by a non-trivial example. We also show the existence of an n-dimensional non-conformally at almost pseudo Ricci symmetric manifold with vanishing scalar curvature.

Keywords

pseudo Ricci symmetric manifold;almost pseudo Ricci symmetric manifold;quasi-constant curvature;qusi-Einstein manifold

References

  1. Brickell, F. and Clark, R. S., Differentiable manifold, Van Nostrand Reinhold Comp. London, 1978.
  2. Chaki, M. C., On pseudo Ricci symmetric manifolds, Bulg. J. Phys., 15(1988), 525-531.
  3. Chaki, M. C. and Kawaguchi, T., On almost pseudo Ricci symmetric manifolds, Tensor, N. S., 68(1)(2007), 10-14.
  4. Chaki, M. C. and Roy, S., Space-times with covariant-constant energy-momentum tensor, Int. J. Theo. Phys., 35(1996), 1027-1032. https://doi.org/10.1007/BF02302387
  5. Chen, B. Y. and Yano, K., Hypersurfaces of a conformally at space, Tensor, N. S., 26(1972), 318-322.
  6. Chen, B. Y. and Yano, K., Special conformally at spaces and canal hypersurfaces, Tohoku Math. J., 25(1973), 177-184. MR 48: 12351 https://doi.org/10.2748/tmj/1178241376
  7. Chern, S. S., On the curvature and characterstic classes of a Riemannian manifold, Abh. Math. Sem. Univ. Hamburg, 20(1956), 117-126.
  8. De, U. C. and Gazi, A. Kalam, On pseudo Ricci symmetric manifolds, to appear.
  9. Deszcz, R., On pseudo-symmetric spaces, Bull. Soc. Math. Belg. Serie A, 44(1992), 1-34.
  10. Eisenhart, L. P., Riemannian Geometry, Princeton University Press, 1949.
  11. Gebarowski, A., Nearly conformally symmetric warped product manifolds, Bulletin of the Institute of Mathematics Academia Sinica, 20(4)(1992), 359-371.
  12. O'neill, B., Semi-Riemannian Geometry, Academic Press, Inc., NY 1983.
  13. Schouten, J. A., Ricci-Calculas, Springer, Berlin, 1954.
  14. Ray-Guha, S., On perfect fluid pseudo Ricci symmetric spacetime, Tensor, N. S., 67(2006), 101-107.
  15. Roter, W. : On conformally symmetric Ricci-recurrent spaces, Colloquium Mathematicum, 31(1974), 87-96. https://doi.org/10.4064/cm-31-1-87-96
  16. Sen, R. N. and Chaki, M. C., On curvature restrictions of a certain kind of conformally flat Riemannian space of class one, Proc. Nat. Inst. Sci. India, 33Part A(1967), 100-102.
  17. Tamassy, L. and Binh, T. Q., On weakly symmetries of Einstein and Sasakian manifolds, Tensor. N. S., 53(1993), 140-148.
  18. Yano, K., Concircular Geometry I, Proc. Imp. Acad. Tokyo, 16(1940), 195-200. https://doi.org/10.3792/pia/1195579139
  19. Yano, K., On the torseforming direction in Riemannian spaces, Proc. Imp. Acad. Tokyo, 20(1944), 340-345. https://doi.org/10.3792/pia/1195572958

Cited by

  1. PSEUDO Z SYMMETRIC RIEMANNIAN MANIFOLDS WITH HARMONIC CURVATURE TENSORS vol.09, pp.01, 2012, https://doi.org/10.1142/S0219887812500041
  2. RECURRENT Z FORMS ON RIEMANNIAN AND KAEHLER MANIFOLDS vol.09, pp.07, 2012, https://doi.org/10.1142/S0219887812500594
  3. CLASSES OF GRADIENT RICCI SOLITONS vol.08, pp.04, 2011, https://doi.org/10.1142/S0219887811005397
  4. On Conformally Flat Almost Pseudo-Ricci Symmetric Spacetimes vol.51, pp.9, 2012, https://doi.org/10.1007/s10773-012-1164-0
  5. Weakly Z-symmetric manifolds vol.135, pp.1-2, 2012, https://doi.org/10.1007/s10474-011-0166-3
  6. CLASSES OF GRADIENT RICCI SOLITONS ON GENERALIZED POINCARÉ MANIFOLDS vol.09, pp.04, 2012, https://doi.org/10.1142/S0219887812500272
  7. On Almost Pseudo Conharmonically Symmetric Manifolds vol.54, pp.4, 2014, https://doi.org/10.5666/KMJ.2014.54.4.699
  8. Almost pseudo-Q-symmetric semi-Riemannian manifolds vol.15, pp.07, 2018, https://doi.org/10.1142/S0219887818501177