On Generalizations of Extending Modules

  • Karabacak, Fatih (Anadolu University, Education Faculty, Department of Mathematics)
  • Received : 2008.08.03
  • Accepted : 2008.11.04
  • Published : 2009.09.30


A module M is said to be SIP-extending if the intersection of every pair of direct summands is essential in a direct summand of M. SIP-extending modules are a proper generalization of both SIP-modules and extending modules. Every direct summand of an SIP-module is an SIP-module just as a direct summand of an extending module is extending. While it is known that a direct sum of SIP-extending modules is not necessarily SIP-extending, the question about direct summands of an SIP-extending module to be SIP-extending remains open. In this study, we show that a direct summand of an SIP-extending module inherits this property under some conditions. Some related results are included about $C_{11}$ and SIP-modules.


SIP-extending modules;summand intersection property;extending modules


  1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, 1974.
  2. D. M. Arnold and J. Hausen, A characterization of modules with the summand intersection property, Comm. Algebra, 18(1990), 519-528.
  3. G. F. Birkenmeier, F. Karabacak and A. Tercan, When is the SIP (SSP) property inherited by free modules, Acta Math. Hungar., 112(2006), 103-106.
  4. G. F. Birkenmeier, J. Y. Kim and J. K. Park, When is the CS condition hereditary?, Comm. Algebra, 27(1999), 3785-3885.
  5. N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Longman, 1990.
  6. J. Hausen, Modules with the summand intersection property, Comm. Algebra, 17(1989), 135-148.
  7. I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, 1969.
  8. F. Karabacak and A. Tercan, Matrix rings with the summand intersection property, Czech. Math. J., 53(2003), 621-626.
  9. F. Karabacak and A. Tercan, On modules and matrix rings with SIP-extending, Taiwanese J. Math., 11(2007), 1037-1044.
  10. N. K. Kim and Y. Lee, Armendariz rings and reduced rings, Journal of Algebra, 223(2000), 477-488.
  11. S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, Cambridge University Press, 1990.
  12. K. Oshiro and S. T. Rizvi, Exchange property of quasi-continuous modules with the finite exchange property, Osaka J. Math., 33(1996), 217-234.
  13. S. T. Rizvi and C. S. Roman, Baer and quasi-baer modules, Comm. Algebra, 32(2004), 103-123.
  14. P. F. Smith, Modules for which every submodule has a unique closure, Ring Theory (S.Jain and S.T. Rizvi eds.) New Jersey, World Scientific, (1992), 302-317.
  15. P. F. Smith and A. Tercan, Generalizations of CS-modules, Comm. Algebra, 21(1993), 1809-1847.
  16. P. F. Smith and A. Tercan, Direct summands of modules which satisfy (C11), Algebra Colloq., 11(2004), 231-237.
  17. G. V. Wilson, Modules with the summand intersection property, Comm. Algebra, 14(1986), 21-38.

Cited by

  1. CS-Rickart modules vol.35, pp.4, 2014,