DOI QR코드

DOI QR Code

Sharp-unknotting Number of a Torus Knot

  • Kanenobu, Taizo (Department of Mathematics Osaka City University Sugimoto)
  • Received : 2008.09.22
  • Accepted : 2008.09.30
  • Published : 2009.09.30

Abstract

We give an estimation for the sharp-unknotting number of certain types of torus knots, and decide it for 39 torus knots.

Keywords

Torus knot;sharp-unknotting number

References

  1. C. McA. Gordon, R. A. Litherland and K. Murasugi, Signatures of covering links, Canad. J. Math., 33(1981), 381-415. https://doi.org/10.4153/CJM-1981-032-3
  2. P. Kromheimer and T. Mrowka, Gauge theory for embedded surfaces I, Topology, 32(1993), 773-826 https://doi.org/10.1016/0040-9383(93)90051-V
  3. P. Kromheimer and T. Mrowka, Gauge theory for embedded surfaces II, Topology, 34(1995), 37-97. https://doi.org/10.1016/0040-9383(94)E0003-3
  4. H. Murakami, Some metrics on classical knots, Math. Ann., 270(1985), 35-45. https://doi.org/10.1007/BF01455526
  5. H. Murakami and S. Sakai, Sharp-unknotting number and the Alexander module, Topology Appl., 52(1993), 169-179. https://doi.org/10.1016/0166-8641(93)90035-C
  6. K. Murasugi, On closed 3-braids, Mem. Amer. Math. Soc., no. 151, 1974.
  7. K. Murasugi, Knot Theory and Its Applications, Birkhauser, 1996.
  8. K. Nakamura, Y. Nakanishi, and Y. Uchida, Delta-unknotting number for knots, J. Knot Theory Ramifications, 7(1998), 639-650. https://doi.org/10.1142/S0218216598000334
  9. Y. Ohyama, Twisting and unknotting operations, Rev. Mat. Univ. Complut. Madrid, 7(1994), 289-305.