DOI QR코드

DOI QR Code

SUBDIRECT SUM OF SUBTRACTION ALGEBRAS

Kim, Seon-Yu;Park, Kang-Eun;Roh, Eun-Hwan

  • Received : 2008.12.03
  • Accepted : 2009.03.03
  • Published : 2009.03.25

Abstract

Subdirect sum of subtraction algebras are introduced, and related properties are investigated.

Keywords

annihilator;generated ideal;subdirect sum

References

  1. J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.
  2. Y. B. Jun, Annihilators of subtraction algebras, Honam Mathematical J. 27(3) (2005), 333-341.
  3. Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65(1) (2007), 129-134, :e-2006, 1081-1086.
  4. Y. B. Jun, H. S. Kim and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Jpn. 61(3) (2005), 459-464, :e-2004, 397-402.
  5. Y. B. Jun and K. H. Kim, Prime and irreducible ideals in subtraction algebras, Ital. J. Pure Appl. Math. (submitted)
  6. Y. H. Kim and E. H. Roh, Neutral subtraction algebras, Honam Mathematical J. 28(1) (2006), 23-29.
  7. E. H. Roh, Prime ideals in subtraction algebras, Honam Mathematical J. 28(3) (2006), 327-332.
  8. E. H. Roh, A note on completed subtraction algebras, Honam Mathematical J. 29(3) (2007), 465-474. https://doi.org/10.5831/HMJ.2007.29.3.465
  9. B. M. Schein, Difference Semigroups, Comm. in Algebra 20 (1992), 2153-2169. https://doi.org/10.1080/00927879208824453
  10. B. Zelinka., Subtraction Semigroups, Math. Bohemica, 120 (1995), 445-447.