DOI QR코드

DOI QR Code

A CHARACTERIZATION OF SCREEN CONFORMAL HALF LIGHTLIKE SUBMANIFOLDS

Jin, Dae-Ho

  • Received : 2008.08.21
  • Accepted : 2009.03.09
  • Published : 2009.03.25

Abstract

We study the geometry of screen conformal half lightlike submanifolds of a semi-Riemannian manifod. The main result is a classification theorem for screen conformal half lightlike submanifolds of a semi-Riemannian space form with a Killing co-screen distribution.

Keywords

Half lightlike submanifolds;Screen conformals

References

  1. Atindogbe, C. and Duggal, K. L. Conformal screen on lightlike hypersurfaces, International J. of Pure and Applied Math., 11(4), 2004, 421-442.
  2. Duggal, K. L., On canonical screen for lightlike submanifolds of codimension two, Central European Joural of Math., vol. 5(4), 2007, 710-719. https://doi.org/10.2478/s11533-007-0026-0
  3. Duggal, K. L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
  4. Jin, D. H., Einstein half lightlike submanifolds of codimension 2, to appear in J. Korea Soc. Math. Edue. Ser. B: Pure Appl. Math., 16, no.1, 2009.
  5. Jin, D. H., Einstein half lightlike submanifolds with a Killing co-screen distribution, Honam Math. J., 30, no.3 2008, p487-504. https://doi.org/10.5831/HMJ.2008.30.3.487

Cited by

  1. STATICAL HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD OF A QUASI-CONSTANT CURVATURE vol.31, pp.2, 2016, https://doi.org/10.4134/CKMS.2016.31.2.365
  2. TRANSVERSAL HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD OF A QUASI-CONSTANT CURVATURE vol.32, pp.1, 2016, https://doi.org/10.7858/eamj.2016.001
  3. EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS WITH SPECIAL CONFORMALITIES vol.49, pp.6, 2012, https://doi.org/10.4134/BKMS.2012.49.6.1163