DOI QR코드

DOI QR Code

POSITIVE INTERPOLATION ON Ax = y AND AX = Y IN ALG$\mathcal{L}$

Kang, Joo-Ho

  • Received : 2009.03.03
  • Accepted : 2009.03.24
  • Published : 2009.06.25

Abstract

Let $\mathcal{L}$ be a subspace lattice on a Hilbert space $\mathcal{H}$. Let x and y be vectors in $\mathcal{H}$ and let $P_x$ be the projection onto sp(x). If $P_xE$ = $EP_x$ for each E ${\in}\;\mathcal{L}$, then the following are equivalent. (1) There exists an operator A in Alg$\mathcal{L}$ such that Ax = y, Af = 0 for all f in $sp(x)^{\perp}$ and A ${\geq}$ 0. (2) sup ${\frac{{\parallel}E^{\perp}y{\parallel}}{{\parallel}E^{\perp}x{\parallel}}:E{\in}\mathcal{L}}$ < ${\infty}$ < x, y > ${\geq}$ 0. Let X and Y be operators in $\mathcal{B}(\mathcal{H})$. Let P be the projection onto $\overline{rangeX}$. If PE = EP for each E ${\in}\;\mathcal{L}$, then the following are equivalent: (1) sup ${\frac{{\parallel}E^{\perp}Yf{\parallel}}{{\parallel}E^{\perp}Xf{\parallel}}:f{\in}\mathcal{H},E{\in}\mathcal{L}}$ < ${\infty}$ and < Xf, Yf > ${\geq}$ 0 for all f in H. (2) There exists a positive operator A in Alg$\mathcal{L}$ such that AX = Y.

Keywords

Interpolation Problem;Subspace Lattice;Positive Interpolation Problem;Alg$\mathcal{L}$

References

  1. Arveson, W. B., Interpolation problems in nest algebras, J. Functional Analysis, 3 (1975), 208-233.
  2. Douglas, R. G., On majorization, factorizaation, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413-415. https://doi.org/10.1090/S0002-9939-1966-0203464-1
  3. Gilfeather, F. and Larson, D., Commutants the compact operators of certain CSL algebras, Operator Theory: Adv. Appl. 2 (Birkhauser, Basel, 1981), 105-120. https://doi.org/10.1007/978-3-0348-5456-6_9
  4. Hopenwasser, A., The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. 29 (1980), 121-126. https://doi.org/10.1512/iumj.1980.29.29009
  5. Hopenwasser, A., Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math. (4), 33 (1989), 657-672.
  6. Jo, Y. S. and Kang, J. H., Interpolation problems in CSL-Algebra AlgL, Rocky Mountain J. of Math. 33, no. 3 (2003), 903-914. https://doi.org/10.1216/rmjm/1181069934
  7. Jo, Y. S.; Kang, J. H. ; Park, Dongwan, Equations AX=Y and Ax=y in AlgL, J. Korean Math. Soc. 43 (2000), 399-411. https://doi.org/10.4134/JKMS.2006.43.2.399
  8. Kadison, R., Irreducible Operator Algebras, Proc. Nat. Acad. Sci. U.S.A. (1957), 273-276.
  9. Lance, E. C., Some properties of nest algebras, Proc. London Math. Soc., 3, 19 (1969), 45-68.
  10. Munch, N., Compact causal data interpolation, J. Math. Anal. Appl. 140 (1989), 407-418. https://doi.org/10.1016/0022-247X(89)90074-7