• Jun, Young-Bae (Department of Mathematics Education (and RINS) Gyeongsang National University) ;
  • Lee, Kyoung-Ja (Department of Mathematics Education Hannam University)
  • 투고 : 2009.02.11
  • 심사 : 2009.08.17
  • 발행 : 2009.09.25


Soft set theory by Molodtsov is applied to ideals in BCC-algebras. The notion of soft BCC-ideals of soft BCC-algebras and idealistic soft BCC-algebras are introduced, and several examples are provided. Relations between a fuzzy BCC-ideal and an idealistic soft BCC-algebra are given, and the characterization of idealistic soft BCC-algebras is established.


  1. H. Aktas and N. Cagman. Soft sets and soft groups. Inform. Sci. 177 (2007), 2726-2735.
  2. D. Chen, E. C. C. Tsang, D. S. Yeunh and X. Wan g, The parametrization reduction of soft sets and its applications, Comput. Math. Appl. 49 (2005), 757-763.
  3. W. A. Dudek and Y. B. Jun, Fuzzy BGG-ideals in BGG-algebras, Math. Montisnigri 10 (1999), 21-30.
  4. W. A. Dudek and X. H. Zhang, On ideals. and congruences in BCC-algebras, Czech. Math. J. 48(123) (1998), 21-29.
  5. Y. B. Jun, Soft BGK/BGI-algebras, Comput. Math. Appl. 56 (2008), 1408-1413.
  6. Y. B. Jun, K. J. Lee and M. A. Ozturk, Soft BGG-algebras. J. Appl. Math. & Informatics. 27 (2009), 1293-1305.
  7. Y. B. Jun. K. J. Lee and C. H. Park, Soft set the theory applied to ideals in d-aloebras, Comput. Math. Appl. 57 (2009), 367-378.
  8. Y. B. Jun and C. H. Park, Applications of soft sets in ideals theory of BCK/BCI-algebras. Inform. Sci. 178 (2008), 2466-2475.
  9. P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Compu. Math. Appl. 45 (2003), 555-562.
  10. P. K. Maji, A. R. Roy and R. Biswas. An application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002). 1077-1083.
  11. D. Molodtsov, Soft set theory - First results. Comput. Math. Appl. 37 (1999), 19-31.
  12. L. A. Zadeh, From circuit theory to system theory. Proc. lost. Radio Eng. 50(1962), 856-865.
  13. L. A. Zadeh, Fuzzy sets Inform. Control 8 (1965), 338-353.
  14. L. A. Zadeh, Toward a generalized theory of uncertainty (GTU) - an outline, Inform. Sci. 172 (2005), 1-40.