논토양에서 질산 이온이 철의 환원과 인의 용출에 미치는 영향

DOI QR코드

DOI QR Code

정종배
Chung, Jong-Bae

  • 발행 : 2009.06.30

초록

환원상태가 발달된 담수상태의 토양이나 습지생태계에서 $NO_3^-$는 환원상태의 진전을 지연시키는 완충역할을 할 수 있다. 논토양에서 $NO_3^-$가 Fe의 환원과 그에 따른 P의 가용화에 미치는 영향을 조사하였다. 담수 후 10 cm 깊이 토양의 산화환원전위 변화는 $NO_3^-$를 처리한 토양과 처리하지 않은 토양에서 현저하게 달리 나타났으며, $NO_3^-$의 환원이 일어나는 동안에는 산화환원전위가 330${\sim}$360 mV 범위에서 유지되었다. 그리고 이 기간 동안 Fe의 환원은 현저히 억제되었다. $NO_3^-$를 처리한 토양 용액의 $PO_4^{3-}$ 함량은 담수 이후 0.2${\sim}$0.3 mg/L 수준 또는 그 이하로 유지되었으며, 반면 $NO_3^-$를 처리하지 않은 경우에는 담수 후 9일째부터 Fe의 환원과 함께 토양 용액의 $PO_4^{3-}$ 함량이 급격히 증가하였다. 일반적인 토양에서 무기태 P의 상당부분이 Fe 산화물에 고정된 형태 및 Fe와 결합된 형태로 존재하므로 Fe의 환원에 따라서 $PO_4^{3-}$가 함께 용출되는 것이다. 이상의 결과를 보면 토양중의 $NO_3^-$$Fe^{2+}$$PO_4^{3-}$의 용출을 조절하는 요인인 것으로 확인할 수 있다. 토양 용액중의 $NO_3^-$ 농도가 1 mg/L 이상으로 유지되는 상태에서는 토양의 산화환원전위가 330 mV 이하로 낮아지지 못하며, 따라서 Fe의 환원과 그에 따른 P의 용출 또한 현저히 억제되는 것으로 판단된다.

키워드

nitrate;iron;phosphate;paddy soil;oxidation-reduction

참고문헌

  1. Logan, T. J. (1993) Agricultural best management practices for water pollution control: current issues, Agric. Ecosyst. Environ. 46, 223-231 https://doi.org/10.1016/0167-8809(93)90026-L
  2. Sposito, G. (1989) The chemistry of soils, Oxford University Press, New York, USA
  3. Ponnamperua, F. N. (1972) The chemistry of submerged soils, Adv. Agron. 24, 29-96 https://doi.org/10.1016/S0065-2113(08)60633-1
  4. Anderson, J. M. (1982) Effect of nitrate concentration in lake water on phosphate release from the sediment, Water Res. 16, 1119-1126 https://doi.org/10.1016/0043-1354(82)90128-2
  5. Lucassen, E. C. H. E. T., Smolders, A. J. P., van der Salm, A. L. and Roelofs, J. G. M. (2004) High groundwater nitrate concentrations inhibit eutrophication of sulphate-rich freshwater wetlands, Biogeochemistry 67, 249-267 https://doi.org/10.1023/B:BIOG.0000015342.40992.cb
  6. Sallade, Y. E. and Sims, J. T. (1997) Phosphorus transformations in the sediments of Delaware's agricultural drainageways: II. Effect of reducing conditions on phosphorus release, J. Environ. Qual. 26, 1579-1588 https://doi.org/10.2134/jeq1997.2661579x
  7. Young, E. O. and Ross, D. S. (2001) Phosphate release from seasonally flooded soils: A laboratory microcosm study, J. Environ. Qual. 30, 91-101 https://doi.org/10.2134/jeq2001.30191x
  8. Surridge, B. W. J., Heathwaite, A. L. and Baird, A. J. (2007) The release of phosphorus to pore water and surface water from river riparian sediments, J. Environ. Qual. 36, 1534-1544 https://doi.org/10.2134/jeq2006.0490
  9. Matocha, C. J. and Coyne, M. S. (2007) Short-term response of soil iron to nitrate addition, Soil Sci. Soc. Am. J. 71, 108-117 https://doi.org/10.2136/sssaj2005.0170
  10. Straub, K. L., Schonhuber, W. A., Buchholz-Cleven, D. E. E. and Schink, B.(2004) Diversity of ferrous iron-oxidizing, nitrate-redycing bacteria and their involvement in oxygen-independent iron cycling, Geomicrobiol. J. 21, 371-378 https://doi.org/10.1080/01490450490485854
  11. Weber, K. A., Pollock, J., Cole, K. A., O'Connor, S. M., Achenbach, L. A. and Coates, J. D. (2006) Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002, Appl. Environ. Microbiol. 72, 686-694 https://doi.org/10.1128/AEM.72.1.686-694.2006
  12. Nelson, D. W. and Sommers, L. E. (1982) Total carbon, organic carbon, and organic matter, p. 539-579, In A. L. Page et al. (ed.) Methods of soil analysis, Part 2: Chemical and microbiological properties, SSSA, Madison, WI, USA
  13. Miller, W. P. and Miller, D. M. (1987) A micro-pipette method for soil mechanical analysis, Commun. Soil Sci. Plant Anal. 18, 1-15 https://doi.org/10.1080/00103628709367799
  14. Rural Development Administration. (1988) Methods of soil chemical analysis, RDA, Suwon, Korea
  15. Stucki, J. W. and Anderson, W. L. (1981) The quantitative assay of minerals for $Fe^{2+}$ and $Fe^{3+}$ using 1,10-phenanthroline : I. Sources of variability, Soil Sci. Soc. Am. J. 45, 633-637 https://doi.org/10.2136/sssaj1981.03615995004500030039x
  16. Ottow, J. C. G. (1980) Selection, characterization, and iron-reducing capacity of nitrate reductaseless ($nit^-$) mutants from iron-reducing-bacteria, Z. Allg. Mikrobiol. 8, 441-443
  17. Sorensen, J. (1982) Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate, Appl. Environ. Microbiol. 43, 319-324
  18. McBride, M. B. (1994) Environmental chemistry of soils, Oxford University Press, New York, USA
  19. Smolders, A. and Roelofs, J. G. M. (1993) Sulphatemediated iron limitation and eutrophication in aquatic ecosystems, Aquat. Bot. 46, 247-253 https://doi.org/10.1016/0304-3770(93)90005-H
  20. Murray, T. E. (1995) The corelation between iron sulfide precipitation and hypolimnetic phosphorus accumulation during one summer in a softwater lake, Can. J. Fish. Aquat. Sci. 52, 1190-1194 https://doi.org/10.1139/f95-115
  21. Roden, E. E. and Edmonds, J. W. (1997) Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation, Arch. Hydrobiol. 139, 347-378
  22. Krishna, K. R. (2003) Agrosphere : nutrient dynamics, ecology, and productivity, Science Publishers Inc., NH, USA
  23. Hong, J. K. and Hong, C. W. (1977) The characteristics of phosphorus in major Korean soils, I. The characteristics of inorganic phosphorus, J. Korean Soc. Soil Sci. Fert. 10, 13-22