DOI QR코드

DOI QR Code

Controversies on governing the rates of protein evolution

  • Choi, Sun-Shim (Department of Molecular and Medical Biotechnology, Kangwon National University)
  • Published : 2009.09.30

Abstract

One of the main issues of molecular evolution is to reveal the principles dictating protein evolutionary rates. A traditional hypothesis posits that protein evolutionary rates are mostly determined by the average functional importance of amino acids in a given protein. Thus the correlations of evolutionary rates with different variables such as PPI, gene essentiality and expression abundance have been studied to test the traditional hypothesis. Recently, mRNA expression abundance among the variables has drawn much attention, not only because it shows relatively strong correlation with protein evolutionary rates, but also because of the controversies surrounding an alternative hypothesis against the traditional one. Here, I will give an overview over the traditional hypothesis, and summarize the different variables that have been found to correlate with protein evolutionary rates. Then I will introduce pros and cons on the two different hypotheses.

References

  1. Akashi, H. (2001). Gene expression and molecular evolution. Curr. Opin. Genet. Dev. 11(6), 660-6 https://doi.org/10.1016/S0959-437X(00)00250-1
  2. Akashi, H. (2003). Translational selection and yeast proteome evolution. Genetics 164(4), 1291-303
  3. Bamshad, M. and S. P. Wooding (2003). Signatures of natural selection in the human genome. Nat. Rev. Genet. 4(2), 99-111 https://doi.org/10.1038/nrg999
  4. Bierne, N. and A. Eyre-Walker (2004). The genomic rate of adaptive amino acid substitution in Drosophila. Mol. Biol. Evol. 21(7), 1350-60 https://doi.org/10.1093/molbev/msh134
  5. Bucciantini, M., E. Giannoni, et al. (2002). Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416(6880), 507-11 https://doi.org/10.1038/416507a
  6. Drummond, D. A., J. D. Bloom, et al. (2005). Why highly expressed proteins evolve slowly. Proc. Natl. Acad. Sci. USA 102(40), 14338-43 https://doi.org/10.1073/pnas.0504070102
  7. Drummond, D. A., A. Raval, et al. (2006). A single determinant dominates the rate of yeast protein evolution. Mol. Biol. Evol. 23(2), 327-37 https://doi.org/10.1093/molbev/msj038
  8. Fay, J. C., G. J. Wyckoff, et al. (2002). Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415(6875), 1024-6 https://doi.org/10.1038/4151024a
  9. Fraser, H. B., D. P. Wall, et al. (2003). A simple dependence between protein evolution rate and the number of protein-protein interactions. BMC Evol. Biol. 3, 11 https://doi.org/10.1186/1471-2148-3-11
  10. Graur, D., W. A. Hide, et al. (1991). Is the guinea-pig a rodent? Nature 351(6328), 649-52 https://doi.org/10.1038/351649a0
  11. Graur, D. and W. H. Li Fundamentals of molecular evolution, Sinauer Associates
  12. Hirsh, A. E. and H. B. Fraser (2001). Protein dispensability and rate of evolution. Nature 411(6841), 1046-9 https://doi.org/10.1038/35082561
  13. Huang, H., E. E. Winter, et al. (2004). Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes. Genome Biol. 5(7), R47 https://doi.org/10.1186/gb-2004-5-7-r47
  14. Jeong, H., S. P. Mason, et al. (2001). Lethality and centrality in protein networks. Nature 411(6833), 41-2 https://doi.org/10.1038/35075138
  15. Jordan, I. K., I. B. Rogozin, et al. (2002). Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res. 12(6), 962-8 https://doi.org/10.1101/gr.87702.ArticlepublishedonlinebeforeprintinMay2002
  16. Kimura, M. (1968). Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genet Res. 11(3), 247-69 https://doi.org/10.1017/S0016672300011459
  17. Kimura, M. (1983). Diffusion model of intergroup selection, with special reference to evolution of an altruistic character. Proc. Natl. Acad. Sci. U S A 80(20), 6317-6321 https://doi.org/10.1073/pnas.80.20.6317
  18. Koonin, E. V. and Y. I. Wolf (2006). Evolutionary systems biology: links between gene evolution and function. Curr. Opin. Biotechnol. 17(5), 481-7 https://doi.org/10.1016/j.copbio.2006.08.003
  19. Krylov, D. M., Y. I. Wolf, et al. (2003). Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res. 13(10), 2229-35 https://doi.org/10.1101/gr.1589103
  20. Kumar, S. (2005). Molecular clocks: four decades of evolution. Nat. Rev. Genet. 6(8), 654-62 https://doi.org/10.1038/nrg1659
  21. Liang, H. and W. H. Li (2007). Gene essentiality, gene duplicability and protein connectivity in human and mouse. Trends Genet. 23(8), 375-8 https://doi.org/10.1016/j.tig.2007.04.005
  22. Lopez-Bigas, N. and C. A. Ouzounis (2004). Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res. 32(10), 3108-14 https://doi.org/10.1093/nar/gkh605
  23. Lynch, M. (2007). The evolution of genetic networks by non-adaptive processes. Nat. Rev. Genet. 8(10), 803-13 https://doi.org/10.1038/nrg2192
  24. Marais, G. and L. Duret (2001). Synonymous codon usage, accuracy of translation, and gene length in Caenorhabditis elegans. J. Mol. Evol. 52(3), 275-80 https://doi.org/10.1007/s002390010155
  25. Marais, G., P. Nouvellet, et al. (2005). Intron size and exon evolution in Drosophila. Genetics 170(1), 481-5 https://doi.org/10.1534/genetics.104.037333
  26. McInerney, J. O. (2006). The causes of protein evolutionary rate variation. Trends Ecol. Evol. 21(5), 230-2 https://doi.org/10.1016/j.tree.2006.03.008
  27. Medina, M. (2005). Genomes, phylogeny, and evolutionary systems biology. Proc. Natl. Acad. Sci. U S A 102 Suppl. 1, 6630-5 https://doi.org/10.1073/pnas.0501984102
  28. Ohta, T. (1973). Slightly deleterious mutant substitutions in evolution. Nature 246(5428), 96-8 https://doi.org/10.1038/246096a0
  29. Pal, C., B. Papp, et al. (2001). Highly expressed genes in yeast evolve slowly. Genetics 158(2), 927-31
  30. Pal, C., B. Papp, et al. (2006). An integrated view of protein evolution. Nat. Rev. Genet. 7(5), 337-48 https://doi.org/10.1038/nrg1838
  31. Park, D., J. Park, et al. (2008). Analysis of human disease genes in the context of gene essentiality. Genomics https://doi.org/10.1016/j.ygeno.2008.08.001
  32. Plotkin, J. B. and H. B. Fraser (2007). Assessing the determinants of evolutionary rates in the presence of noise. Mol. Biol. Evol. 24(5), 1113-21 https://doi.org/10.1093/molbev/msm044
  33. Rocha, E. P. (2006). The quest for the universals of protein evolution. Trends Genet. 22(8), 412-6 https://doi.org/10.1016/j.tig.2006.06.004
  34. Rocha, E. P. and A. Danchin (2004). An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol. Biol. Evol. 21(1), 108-16 https://doi.org/10.1093/molbev/msh004
  35. Sharp, P. M. and W. H. Li (1986). An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 24(1-2), 28-38 https://doi.org/10.1007/BF02099948
  36. Sharp, P. M. and W. H. Li (1987). The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15(3), 1281-95 https://doi.org/10.1093/nar/15.3.1281
  37. Subramanian, S. and S. Kumar (2004). Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome. Genetics 168(1), 373-81 https://doi.org/10.1534/genetics.104.028944
  38. Wagner, A. (2001). The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. 18(7), 1283-92 https://doi.org/10.1093/oxfordjournals.molbev.a003913
  39. Wall, D. P., A. E. Hirsh, et al. (2005). Functional genomic analysis of the rates of protein evolution. Proc. Natl. Acad. Sci. USA 102(15), 5483-8 https://doi.org/10.1073/pnas.0501761102
  40. Wilke, C. O. and D. A. Drummond (2006). Population genetics of translational robustness. Genetics 173(1), 473-81 https://doi.org/10.1534/genetics.105.051300
  41. Wolf, Y. I. (2006). Coping with the quantitative genomics 'elephant': the correlation between the gene dispensability and evolution rate. Trends Genet. 22(7), 354-7 https://doi.org/10.1016/j.tig.2006.04.009
  42. Wright, S. I., C. B. Yau, et al. (2004). Effects of gene expression on molecular evolution in Arabidopsis thaliana and Arabidopsis lyrata. Mol. Biol. Evol. 21(9), 1719-26 https://doi.org/10.1093/molbev/msh191
  43. Yang, J., Z. Gu, et al. (2003). Rate of protein evolution versus fitness effect of gene deletion. Mol. Biol. Evol. 20(5), 772-4 https://doi.org/10.1093/molbev/msg078
  44. Zuckerkandl, E. (1976). Evolutionary processes and evolutionary noise at the molecular level. II. A selectionist model for random fixations in proteins. J. Mol. Evol. 7(4), 269-311 https://doi.org/10.1007/BF01743626