Controversies on governing the rates of protein evolution

  • Choi, Sun-Shim (Department of Molecular and Medical Biotechnology, Kangwon National University)
  • Published : 2009.09.30


One of the main issues of molecular evolution is to reveal the principles dictating protein evolutionary rates. A traditional hypothesis posits that protein evolutionary rates are mostly determined by the average functional importance of amino acids in a given protein. Thus the correlations of evolutionary rates with different variables such as PPI, gene essentiality and expression abundance have been studied to test the traditional hypothesis. Recently, mRNA expression abundance among the variables has drawn much attention, not only because it shows relatively strong correlation with protein evolutionary rates, but also because of the controversies surrounding an alternative hypothesis against the traditional one. Here, I will give an overview over the traditional hypothesis, and summarize the different variables that have been found to correlate with protein evolutionary rates. Then I will introduce pros and cons on the two different hypotheses.


  1. Akashi, H. (2001). Gene expression and molecular evolution. Curr. Opin. Genet. Dev. 11(6), 660-6
  2. Akashi, H. (2003). Translational selection and yeast proteome evolution. Genetics 164(4), 1291-303
  3. Bamshad, M. and S. P. Wooding (2003). Signatures of natural selection in the human genome. Nat. Rev. Genet. 4(2), 99-111
  4. Bierne, N. and A. Eyre-Walker (2004). The genomic rate of adaptive amino acid substitution in Drosophila. Mol. Biol. Evol. 21(7), 1350-60
  5. Bucciantini, M., E. Giannoni, et al. (2002). Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416(6880), 507-11
  6. Drummond, D. A., J. D. Bloom, et al. (2005). Why highly expressed proteins evolve slowly. Proc. Natl. Acad. Sci. USA 102(40), 14338-43
  7. Drummond, D. A., A. Raval, et al. (2006). A single determinant dominates the rate of yeast protein evolution. Mol. Biol. Evol. 23(2), 327-37
  8. Fay, J. C., G. J. Wyckoff, et al. (2002). Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415(6875), 1024-6
  9. Fraser, H. B., D. P. Wall, et al. (2003). A simple dependence between protein evolution rate and the number of protein-protein interactions. BMC Evol. Biol. 3, 11
  10. Graur, D., W. A. Hide, et al. (1991). Is the guinea-pig a rodent? Nature 351(6328), 649-52
  11. Graur, D. and W. H. Li Fundamentals of molecular evolution, Sinauer Associates
  12. Hirsh, A. E. and H. B. Fraser (2001). Protein dispensability and rate of evolution. Nature 411(6841), 1046-9
  13. Huang, H., E. E. Winter, et al. (2004). Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes. Genome Biol. 5(7), R47
  14. Jeong, H., S. P. Mason, et al. (2001). Lethality and centrality in protein networks. Nature 411(6833), 41-2
  15. Jordan, I. K., I. B. Rogozin, et al. (2002). Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res. 12(6), 962-8
  16. Kimura, M. (1968). Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genet Res. 11(3), 247-69
  17. Kimura, M. (1983). Diffusion model of intergroup selection, with special reference to evolution of an altruistic character. Proc. Natl. Acad. Sci. U S A 80(20), 6317-6321
  18. Koonin, E. V. and Y. I. Wolf (2006). Evolutionary systems biology: links between gene evolution and function. Curr. Opin. Biotechnol. 17(5), 481-7
  19. Krylov, D. M., Y. I. Wolf, et al. (2003). Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res. 13(10), 2229-35
  20. Kumar, S. (2005). Molecular clocks: four decades of evolution. Nat. Rev. Genet. 6(8), 654-62
  21. Liang, H. and W. H. Li (2007). Gene essentiality, gene duplicability and protein connectivity in human and mouse. Trends Genet. 23(8), 375-8
  22. Lopez-Bigas, N. and C. A. Ouzounis (2004). Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res. 32(10), 3108-14
  23. Lynch, M. (2007). The evolution of genetic networks by non-adaptive processes. Nat. Rev. Genet. 8(10), 803-13
  24. Marais, G. and L. Duret (2001). Synonymous codon usage, accuracy of translation, and gene length in Caenorhabditis elegans. J. Mol. Evol. 52(3), 275-80
  25. Marais, G., P. Nouvellet, et al. (2005). Intron size and exon evolution in Drosophila. Genetics 170(1), 481-5
  26. McInerney, J. O. (2006). The causes of protein evolutionary rate variation. Trends Ecol. Evol. 21(5), 230-2
  27. Medina, M. (2005). Genomes, phylogeny, and evolutionary systems biology. Proc. Natl. Acad. Sci. U S A 102 Suppl. 1, 6630-5
  28. Ohta, T. (1973). Slightly deleterious mutant substitutions in evolution. Nature 246(5428), 96-8
  29. Pal, C., B. Papp, et al. (2001). Highly expressed genes in yeast evolve slowly. Genetics 158(2), 927-31
  30. Pal, C., B. Papp, et al. (2006). An integrated view of protein evolution. Nat. Rev. Genet. 7(5), 337-48
  31. Park, D., J. Park, et al. (2008). Analysis of human disease genes in the context of gene essentiality. Genomics
  32. Plotkin, J. B. and H. B. Fraser (2007). Assessing the determinants of evolutionary rates in the presence of noise. Mol. Biol. Evol. 24(5), 1113-21
  33. Rocha, E. P. (2006). The quest for the universals of protein evolution. Trends Genet. 22(8), 412-6
  34. Rocha, E. P. and A. Danchin (2004). An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol. Biol. Evol. 21(1), 108-16
  35. Sharp, P. M. and W. H. Li (1986). An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 24(1-2), 28-38
  36. Sharp, P. M. and W. H. Li (1987). The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15(3), 1281-95
  37. Subramanian, S. and S. Kumar (2004). Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome. Genetics 168(1), 373-81
  38. Wagner, A. (2001). The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. 18(7), 1283-92
  39. Wall, D. P., A. E. Hirsh, et al. (2005). Functional genomic analysis of the rates of protein evolution. Proc. Natl. Acad. Sci. USA 102(15), 5483-8
  40. Wilke, C. O. and D. A. Drummond (2006). Population genetics of translational robustness. Genetics 173(1), 473-81
  41. Wolf, Y. I. (2006). Coping with the quantitative genomics 'elephant': the correlation between the gene dispensability and evolution rate. Trends Genet. 22(7), 354-7
  42. Wright, S. I., C. B. Yau, et al. (2004). Effects of gene expression on molecular evolution in Arabidopsis thaliana and Arabidopsis lyrata. Mol. Biol. Evol. 21(9), 1719-26
  43. Yang, J., Z. Gu, et al. (2003). Rate of protein evolution versus fitness effect of gene deletion. Mol. Biol. Evol. 20(5), 772-4
  44. Zuckerkandl, E. (1976). Evolutionary processes and evolutionary noise at the molecular level. II. A selectionist model for random fixations in proteins. J. Mol. Evol. 7(4), 269-311