DOI QR코드

DOI QR Code

Estimation of C(t)-Integral in Transient Creep Condition for Pipe with Crack Under Combined Mechanical and Thermal Stress (II) - Elastic-Plastic-Creep -

복합응력이 작용하는 균열 배관에 대한 천이 크리프 조건에서의 C(t)-적분 예측 (II) - 탄-소성-크리프 -

  • Published : 2009.10.01

Abstract

In this paper, the estimation method of C(t)-integral for combined mechanical and thermal loads is proposed for elastic-plastic-creep material via 3-dimensional FE analyses. Plasticity induced by initial loading makes relaxation rate different from those produced elastically. Moreover, the interactions between mechanical and thermal loads make the relaxation rate different from those produced under mechanical load alone. To quantify C(t)-integral for combined mechanical and thermal loads, the simplified formula are developed by modifying redistribution time in existing work done by Ainsworth et al..

Keywords

C(t)-Integral;Crack;Transient Creep Condition;Combined Mechanical and Thermal Stress;Elastic Plastic Creep

References

  1. Webster, G. A., Ainsworth, R. A., 1994, 'High Temperature Component Life Assessment,' Chapman & Hall
  2. Ainsworth, R. A., 1982, 'Some Observations on Creep Crack Growth,' International Journal of Fracture, Vol. 20, pp. 147-159 https://doi.org/10.1007/BF01141263
  3. Riedel, H., Rice, J. R., 1980, 'Tensile Cracks in Creeping Solids,' Fracture Mechanics : Twelfth Conference, ASTM STP 700, pp. 112-130
  4. Ehlers, R., Riedel, H., 1981, 'A Finite Element Analysis of Creep Deformation in a Specimen Containing a Macroscopic Crack,' In Proc. Fifth Int. Conf. on Fracture (Edited by D. Francois), Vol. 2, pp. 691-698, Pergamon Press, Oxford
  5. Ainsworth, R. A., Budden, P. J., 1990, 'Crack Tip Fields Under Non-Steady Creep Conditions-II. Estimates of Associated Crack Growth,' Fatigue and Fracture of Engineering Materials and Structures, Vol. 13, No. 3, pp. 277-285 https://doi.org/10.1111/j.1460-2695.1990.tb00599.x
  6. Kim, Y. J., 2001, 'Contour Integral Calculations for Generalized Creep Laws Within ABAQUS,' International Journal of Pressure Vessels and Piping,' Vol. 78, pp. 661-666 https://doi.org/10.1016/S0308-0161(01)00080-1
  7. Kim, Y. J., Dean, D. W. and Budden, P. J., 2001, 'Finite Element Analysis to Assess the Effect of Initial Plasticity on Transient Creep for Defects Under Mechanical Loading,' International Journal of Pressure Vessels and Piping, Vol. 78, pp. 1021-1029 https://doi.org/10.1016/S0308-0161(01)00119-3
  8. Joch, J., Ainsworth, R. A., 1992, 'The Effect of Geometry on the Development of Creep Singular Fields for Defects Under Step-Load Controlled Loading,' Fatigue and Fracture of Engineering Materials and Structures, Vol. 15, No. 3, pp. 229-240 https://doi.org/10.1111/j.1460-2695.1992.tb01266.x
  9. Lei, Y., 2008, 'Finite Element RCC-MR Creep Analysis of Circumferentially Cracked Cylinders Under Combined Residual Stress and Mechanical Load,' British Energy Report E/REP/BDBB/0027/GEN/07, British Energy Generation Limited
  10. British Energy Generation Ltd., 2007, 'R6:Assessment of the Integrity of Structures Containing Defects, Rivision 4,' British Energy
  11. Song, T. K., Kim, Y. J., 2009, 'Estimation of C(t)- Integral in Transient Creep Condition for Pipe with Crack Under Combined Mechanical and Thermal Stress (Part II – Elastic Plastic Creep), submitted to Transactions of the KSME(A) https://doi.org/10.3795/KSME-A.2009.33.10.1065
  12. Kumar, V., German, M. D. and Shih C. F., 1981, 'An Engineering Approach for Elastic Plastic Fracture Analysis,' EPRI report, No. NP1931
  13. Kumar, V., German, M. D., Wilkening, W. W., Andrews, W. R., DeLorenzi H. G. and Mowbray, D. F., 1984, ' Advances in Elastic-Plastic Fracture Analysis,' ERPI Report, No. NP-3607
  14. Ainsworth, R.A., The treatment of thermal and residual stresses in fracture assessments, Engineering Fracture Mechanics, Vol.24, pp.65-76, 1986 https://doi.org/10.1016/0013-7944(86)90008-1
  15. Ainsworth, R.A., Hooton, D.G., 2008, 'R6 and R5 procedures : The Way Forward,' Int. J. of Pres. Ves. and Piping, Vol.85, pp. 175-182 https://doi.org/10.1016/j.ijpvp.2007.10.003
  16. Song, T. K., Oh, C. K., Kim, Y. J., 2008, 'V-Factor Estimation Under Thermal and Mechanical Stress for Circumferentially Cracked Cylinder,' Trans. of KSME(A), Vol. 32, No. 12, pp. 1123-1131 https://doi.org/10.3795/KSME-A.2008.32.12.1123
  17. Anderson, T.L.,2005, Fracture Mechanics- Fundamentals and Applications-3rd edition, CRC press
  18. British Energy Generation Ltd., 2003, 'R5: An Assessment Procedure for the High Temperature Response of Structures. Revision 2,' British Energy
  19. Ainsworth, R. A., Budden, P. J., 1990, 'Crack Tip Fields Under Non-Steady Creep Conditions-I. Estimates of the Amplitude of the Fields,' Fatigue and Fracture of Engineering Materials and Structures, Vol. 13, No. 3, pp. 263-276 https://doi.org/10.1111/j.1460-2695.1990.tb00598.x
  20. Joch, J., Ainsworth, R. A., 1992, 'The Development of Creep Singular Fields for Defects in Thermally Loaded Structures,' Fatigue and Fracture of Engineering Materials and Structures, Vol. 15, No. 7, pp. 685-693 https://doi.org/10.1111/j.1460-2695.1992.tb01306.x
  21. Stacey, A., Barthelemy, J.-Y., Leggatt, R.H., Ainsworth, R.A., 2000, 'Incorporation of Residual Stresses into the SINTAP Defect Assessment Procedure,' Engineering Fracture Mechanics, Vol. 67, pp.573-611 https://doi.org/10.1016/S0013-7944(00)00075-8
  22. Miller, A. G., Ainsworth, R. A., 1989, 'Consistency of Numerical Results for Power-Law Hardening Materials and the Accuracy of the Reference Stress Approximation for J,' Engineering Fracture Mechanics, Vol. 32, No. 2, pp. 233-247 https://doi.org/10.1016/0013-7944(89)90296-8

Cited by

  1. Estimation of C(t) -Integral Under Transient Creep Conditions for a Cracked Pipe Subjected to Combined Mechanical and Thermal Loads Depending on Loading Conditions vol.35, pp.6, 2011, https://doi.org/10.3795/KSME-A.2011.35.6.609
  2. Estimation of C(t)-Integral in Transient Creep Condition for Pipe with Crack Under Combined Mechanical and Thermal Stress (II) - Elastic-Plastic-Creep - vol.33, pp.10, 2009, https://doi.org/10.3795/KSME-A.2009.33.10.1065