Self-healing Elastomers As Dream Smart Materials

꿈의 스마트 재료로서 자기치유 탄성체

  • Kim, Il (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Shin, Nam-Ho (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Jo, Jung-Kyu (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Hur, A-Young (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Li, Haiqing (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha, Chang-Sik (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University)
  • 김일 (부산대학교 고분자공학과) ;
  • 신남호 (부산대학교 고분자공학과) ;
  • 조정규 (부산대학교 고분자공학과) ;
  • 허아영 (부산대학교 고분자공학과) ;
  • 이해청 (부산대학교 고분자공학과) ;
  • 하창식 (부산대학교 고분자공학과)
  • Published : 2009.09.30

Abstract

Sophisticated polymeric materials with 'responsive' properties are beginning to reach the market. The use of reversible, noncovalent interactions is a recurring design principle for responsive materials. Recently developed hydrogen-bonding units allow this design principle to be taken to its extreme. Supramolecular polymers, where hydrogen bonds are the only force keeping the monomers together, form materials whose (mechanical) properties respond strongly to a change in temperature or solvent. In this review, we describe some examples of hydrogen-bonded supramolecular polymers that can be utilized for self-healing materials. Synthesis of a rubber-like material that can be recycled might not seem exciting. But one that can also repeatedly repair itself at room temperature, without adhesives, really stretches the imagination. Autonomic healing materials respond without external intervention to environmental stimuli in a nonlinear and productive fashion, and have great potential for advanced engineering systems.

References

  1. M. Yoshida and J. Lahann, 'Smart Nanomaterials', ACS Nano, 2, 1101 (2008) https://doi.org/10.1021/nn800332g
  2. A. Alexeev, W. E. Uspal, and A. C. Balazs, 'Harnessing Janus Nanoparticles to Create Controllable Pores in Membranes', ACS Nano, 2, 1117 (2008) https://doi.org/10.1021/nn8000998
  3. P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, and L. Leibler, 'Self-healing and Thermoreversible Rubber from Supramolecular Assembly', Nature, 451, 977 (2008) https://doi.org/10.1038/nature06669
  4. G. H. Koch, M. P. Brongers, N. G. Thompson, Y. P. Virmani, and J. H. Payer, Corrosion Costs and Preventive Strategies in the United States, FHWA-RD-01-156, U. S. Department of Transportation, Federal Highway Administration, Washington D.C., 2001
  5. S. H. Cho, S. R. White, and P. V. Braun, 'Self-Healing Polymer Coatings', Adv. Mater., 21, 645 (2009) https://doi.org/10.1002/adma.200802008
  6. S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, and S. Viswanathan, 'Autonomic Healing of Polymer Composites', Nature, 409, 794 (2001) https://doi.org/10.1038/35057232
  7. K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. White, 'Self-healing Materials with Microvascular Networks', Nature Mater., 6, 581 (2007) https://doi.org/10.1038/nmat1934
  8. K. Nagaya, S. Ikai, M. Chiba, and X. Chao, 'X. Tire with self-re pairing mechanism', JSME Int. J. 49, 379 (2006) https://doi.org/10.1299/jsmec.49.379
  9. P. Sonntag, et al. 'Biocide squirting from an elastomeric tri-layer film', Nature Mater. 3, 311 (2004) https://doi.org/10.1038/nmat1113
  10. X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, and F. Wudl1, 'A Thermally Re-mendable Cross-Linked Polymeric Material', Science, 295, 1698 (2002) https://doi.org/10.1126/science.1065879
  11. J. M. Lehn, 'Supramolecular Chemistry: Concepts and Perspectives', VCH, Weinheim, 1995
  12. R. F. M. Lange, M. Van Gurp, and E. W. Meijer, 'Hydrogenbonded supramolecular networks', J. Polym. Sci. Part A: Poly. Chem., 37, 3657 (1999) https://doi.org/10.1002/(SICI)1099-0518(19991001)37:19<3657::AID-POLA1>3.0.CO;2-6
  13. C. B. Pourcain and A. C. Griffin, 'Thermoreversible supramolecular networks with polymeric properties', Macromolecules, 28, 4116 (1995) https://doi.org/10.1021/ma00116a010
  14. B. Ghosh and M. W. Urban, 'Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks', Science, 323, 1458 (2009) https://doi.org/10.1126/science.1167391
  15. A. W. Bosman, R. P. Sijbesma, and E. W. Meijer, 'Supramolecular polymers at work', Mater. Today, 7, 34 (2004) https://doi.org/10.1016/S1369-7021(04)00187-7