Non-Newtonian Rheological Properties of Poly(vinyl alcohol) hydrogel

Poly(vinyl alcohol) hydrogel의 비 뉴톤 유변학적인 성질

  • Published : 2009.09.30

Abstract

The rheological properties of complex materials such as polymer melts show complicated non-Newtonian flow phenomena when they are subjected to shear flow. These flow properties are controlled by the characteristics of flow units and the interactions among the flow segments. The non-Newtonian flow curves of poly(vinyl alcohol) hydrogel were obtained in various concentrations and temperatures by using a cone-plate rheometer. By applying non-Newtonian flow equation to the flow curves for PVA hydrogel samples, the rheological parameters were obtained. The PVA hydrogel samples are shear thinning under increasing shear rate modes which result in thixotropic behavior.

References

  1. T H. Young, W. Y. Chuang, M. Y. Hsieh, L. W. Chen, and J. P. Hsu, 'Assessment and modeling of poly(vinyl alcohol) bioartificial pancreas in vivo', Biomaterials, 23, 3495 (2002) https://doi.org/10.1016/S0142-9612(02)00075-3
  2. M. Kobayashi, J. Toguchida, and M. Oka, 'Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus', Biomaterials, 24, 639 (2003) https://doi.org/10.1016/S0142-9612(02)00378-2
  3. K. Y. Kim, D. S. Min, and H. S. Chung, 'Chitosan-based Skin Substitute ; I. Synthesis and Properties of Polyelectrolyte Complex Consisting of Sulfonated Chitosan and Chitosan', Polymer(Korea), 12, 234 (1988)
  4. S. Touil, J. Palmeri, S. Tingry, S. Bouchtalla, and A. Deratani, 'Generalized dual-mode modelling of xylene isomer sorption in polyvinylalcohol membranes containing $\alpha$-cyclodextrin', J. Membrane Science, 317, 2 (2008) https://doi.org/10.1016/j.memsci.2007.07.033
  5. M. Qi, Y. Gu, N. Sakata, D. Kim, Y. Shirouzu, C. Yamamoto, A. Hiura, S. Sumi, and K. Inoue, 'PVA hydrogel sheet macroencapsulation for the bioartificial pancreas', Biomaterials, 25, 5885 (2004) https://doi.org/10.1016/j.biomaterials.2004.01.050
  6. J. H. Bang, N. J. Kim, S. W. Choi, E. R. Kim, and S. J. Hahn, 'The equilibrium between dilatant and thixotropic flow units', Bull. Korean Chem. Soc., 17, 262 (1996) https://doi.org/10.1007/BF02699037
  7. T. Lemke, F. Bagusat, K. Kohnke, K. Husemann, and H. J. Mogel, 'Time dependent viscosity of concentrated alumina suspensions', Colloids and Surfaces A: Physicochemical and Engineering Aspects, 150, 283 (1999) https://doi.org/10.1016/S0927-7757(98)00815-2
  8. J. Mewis and R. de Bleyser, 'Dynamic behavior of thixotropic systems', J. Colloid and Interface Sci., 40, 360 (1972) https://doi.org/10.1016/0021-9797(72)90345-1
  9. J. H. Bang, 'Flow mechanism of the transition from dilatancy to thixotropy with shear rate', Thesis for Ph. D. Degree in Hanyang Univ., (1988)
  10. S. M. A. Razavi, and H. Karazhiyan, 'Flow properties and thixotropy of selected hydrocolloids: Experimental and modeling studies', Food Hydrocolloids, 23, 908 (2009) https://doi.org/10.1016/j.foodhyd.2008.05.010
  11. H. Kuno and M. Senna, 'A practical analysis of pseudoplastic flow of suspensions', J. Colloid and Inteface Sci., 89, 591 (1982) https://doi.org/10.1016/0021-9797(82)90216-8
  12. I. Wagstaff and C. E. Chaffey, 'Shear thinning and thickening rheology : I. Concentrated acrylic dispersions', J. Colloid and Interface Sci., 59, 53 (1977) https://doi.org/10.1016/0021-9797(77)90338-1
  13. T. Ree and H. Eyring, 'Theory of non-Newtonian flow. I. Solid plastic system', J. Appl. Phys., 26, 793 (1955) https://doi.org/10.1063/1.1722098
  14. S. J. Hahn and T. Ree and H. Eyring, 'A theory of thixotropy', JNLGI Spokesman, 21, 12 (1957)
  15. S. J. Hahn and T. Ree and H. Eyring, 'Flow mechanism of thixotropic substances', JNLGI Spokesman, 23, 129 (1959)
  16. Y. S. Lee and J. Ree and T. Ree, 'Effect of zeta-potential on the viscosity of clay-water suspension', Bull. Korean Chem. Soc., 3, 83 (1982)