DOI QR코드

DOI QR Code

Mycoplasma hyopneumoniae Induces Grap, Gadd45β, and secreted phosphoprotein 1 Gene Expression as Part of the Inflammatory Response in RAW264.7 Cells

  • Hwang, Mi-Hyun (College of Veterinary Medicine, Kyungpook National University) ;
  • Choi, Myung-Jin (College of Veterinary Medicine, Kyungpook National University) ;
  • Park, Seung-Chun (College of Veterinary Medicine, Kyungpook National University)
  • Published : 2009.09.01

Abstract

Genes related to Mycoplasma hyopneumoniae-induced inflammation were identified using the genefishing technology, an improved method for identifying differentially expressed genes (DEGs) using an annealing control primer (ACP) system in RAW264.7 cells. After treatment with M. hyopneumoniae, 16 DEGs were expressed in RAW264.7 cells using a pre-screening system. Among these 16 DEGs, 11 DEGs (DEGs 1, 4, 5-10, 12-15) were selected and sequenced directly, revealing that DEG12 (Grap), DEG14 (Gadd45), and DEG15 (secreted phosphoprotein 1) were related to inflammatory cytokines. This is the first report that intact M. hyopneumoniae induces the expression of Grap, Gadd 45${\beta}$, and secreted phosphoprotein 1 in RAW264.7 cells. Subsequently, these genes may be targets for screening novel inhibitors of the mycoplasmal inflammatory response.

References

  1. DeBey, M.C. and Ross, R.F. (1994). Ciliostasis and loss of cilia induced by Mycoplasma hyopneumoniae in porcine tracheal organ cultures. Infect. Immun., 62, 5312-5318
  2. Hwang, M.H., Lim, J.H., Yun, H.I., Kim, J.C., Jung, B.Y., Hsu, W.H. and Park, S.C. (2006). The effect of polyclonal antibody on intracellular calcium increase induced by Mycoplasma hyopneumoniae in porcine tracheal cells. Vet. J., 172, 556-560 https://doi.org/10.1016/j.tvjl.2005.05.015
  3. Hwang, M.H., Chang, Z.Q., Kang, E.H., Lim, J.H., Yun, H.I., Rhee, M.H., Jeong, K.S. and Park, S.C. (2008). Surfactin C inhibits Mycoplasma hyopneumoniae-induced transcription of proinflammatory cytokines and nitric oxide production in murine RAW 264.7 cells. Biotechnol. Lett., 30, 229-233 https://doi.org/10.1007/s10529-007-9552-x
  4. Park, S.C., Yibchok-Anun, S., Cheng, H., Young, T.F., Thacker, EL., Minion, F.C., Ross, R.F. and Hsu, W.H. (2002). Mycoplasma hyopneumoniae increases intracellular calcium release in porcine ciliated tracheal cells. Infect. Immun., 70, 2502-2506 https://doi.org/10.1128/IAI.70.5.2502-2506.2002
  5. Friis, N.F. (1975). Some recommendations concerning primary isolation of Mycoplasma suipneumoniae and Mycoplasma floculare: a survey. Nord. Vet. Med., 27, 337-339
  6. Hwang, I.T., Kim, Y.J., Kim, S.H., Kwak, C.I., Gu, Y.Y. and Chun, J.Y. (2003). Annealing control primer system for improving specificity of PCR amplification. BioTechniques, 35, 1180-1184
  7. Kim, Y.J., Kwak, C.I., Gu, Y.Y., Hwang, I.T. and Chun, J.Y. (2004). Annealing control primer system for identification of differentially expressed genes on agarose gels. Bio-Techniques, 36, 424-426
  8. Randy, S., Ouyang, Y.B., Qu, C.K., Alonso, A., Sperzel, L., Mustelin, T., Kaplan, M.H. and Feng, G.S. (2002). Grap negatively regulates T-cell receptor-elicited lymphocyte proliferation and interleukin-2 induction. Mol. Cell. Biol., 22, 3230-3236 https://doi.org/10.1128/MCB.22.10.3230-3236.2002
  9. Asai, T., Okada, M., Ono, M., Mori, Y., Yokomizo, Y. and Sato, S. (1994). Detection of interleukin-6 and prostaglandin $E_2$ in bronchoalveolar lavage fluids of pigs experimentally infected with Mycoplasma hyopneumoniae. Vet. Immunol. Immunopathol., 44, 97-102 https://doi.org/10.1016/0165-2427(94)90172-4
  10. Lu, B., Ferrandino, A.F. and Flavell, R.A. (2004). Gadd45beta is important for perpetuating cognate and inflammatory signals in T cells. Nat. Immunol., 5, 38-44 https://doi.org/10.1038/ni1020
  11. Shirai, W.H., Takei, M., Yoshikawa, T., Azuma, T., Kato, M., Mitamura, K., Ueki, T., Kida, A., Horie, T., Seki, N. and Sawada, S. (2004). Detection of Grb-2-related adaptor protein gene (GRAP) and peptide molecule in salivary glands of MRL/lpr mice and patients with Sjogren's syndrome. J. Int. Med. Res., 32, 284-291 https://doi.org/10.1177/147323000403200308
  12. Asai, T., Okada, M., Ono, M., Irisawa, T., Mori, Y., Yokomizo, Y. and Sato, S. (1993). Increased levels of tumor necrosis factor and interleukin 1 in bronchoalveolar lavage fluids from pigs infected with Mycoplasma hyopneumoniae. Vet. Immunol. Immunopathology, 38, 253-260 https://doi.org/10.1016/0165-2427(93)90085-I
  13. O'Regan, A.W., Hayden, J.M., Body, S., Liaw, L., Mulligan, N., Goetschkes, M. and Berman, J.S. (2001). Abnormal pulmonary granuloma formation in osteopontin-deficient mice. Am. J. Respir. Crit. Care. Med., 164, 2243-2247 https://doi.org/10.1164/ajrccm.164.12.2104139
  14. Kohan, M., Bader, R., Puxeddu, I., Levi-Schaffer, F., Breuer, R. and Berkman, N. (2007). Enhanced osteopontin expression in a murine model of allergen-induced airway remodeling. Clin. Exp. Allergy, 37, 1444-1454
  15. Hwang, K.C., Cui, X.S., Park, S.P., Shin, M.R., Park, S.Y., Kim, E.Y. and Kim, N.H. (2004). Identification of differentially regulated genes in bovine blastocysts using an annealing control primer system. Mol. Reprod. Dev., 69, 43-51 https://doi.org/10.1002/mrd.20156
  16. Serlin, D.M., Kuang, P.P., Subramanian, M., O'Regan, A., Li, X., Berman, J.S. and Goldstein, R.H. (2006). Interleukin- 1beta induces osteopontin expression in pulmonary fibroblasts. J. Cell. Biochem., 97, 519-529 https://doi.org/10.1002/jcb.20661
  17. Lu, B., Yu, H., Chow, C., Li, B., Zheng, W., Davis, R.J. and Flavell, R.A. (2001). GADD45 gamma mediates the activation of the p38 and JNK MAP kinase pathways and cytokine production in effector $TH_1$ cells. Immunity, 14, 583-590 https://doi.org/10.1016/S1074-7613(01)00141-8