분리된 전처리 및 후처리 공간영역 필터를 가진 움직임 적응적 시공간영역 잡음 제거 기법

(Motion Adaptive Temporal-Spatial Noise Reduction Scheme with Separated Pre- and Post-Spatial Filter)

김성득*, 임경원**

(Sung Deuk Kim and Kyoung Won Lim)

요 약

사건영역 필터와 공간영역 필터를 연결한 움직임 적응적 동정상 잡음 제거기법을 제안한다. 움직임 적응적 사건영역 필터에 서는 전처리 공간영역 필터를 활성화하여 잡음에 강한 움직임 감지를 수행하고, 움직임의 영역에 따라 적응적으로 필터링 강도 를 조절한다. 동정상에 내재된 사건 영란성은 초분의 활용하기 위해, 잡음이 있는 영역에 사건영역 필터에 의해 제압으 로 처리된다. 따라서 사건영역 필터가 큰 영란성에서, 영상의 세밀한 부분을 잘 보존하며, 잡음을 제거할 수 있다. 움직임 감지를 위해 사용되는 전처리 공간영역 필터는 다르게, 후처리 공간영역 필터는 사건영역 필터의 영역과 전처리 공간영역 필터에서 얻어진 공간영역 자기유사성 탐색 결과를 바탕으로 공간영역 필터링을 수행한다.

Abstract

A motion adaptive video noise reduction scheme is proposed by cascading a temporal filter and a spatial filter. After a noise-robust motion detection is performed with a pre-spatial filter, the strength of the motion adaptive temporal filter is controlled by the amount of temporal movement. In order to fully utilize the temporal correlation of video signal, noisy input image is processed first by the temporal filter, therefore, image details of temporally stationary region are quite well preserved while undesired noises are suppressed. In contrast to the pre-spatial filter used for the robust motion detection, the cascaded post-spatial filter removes the remained noises by considering the strength of the temporal filter and the spatial self-similarity search results obtained from the pre-spatial filter.

Keywords: noise reduction, motion adaptive filter, spatio-temporal filter

I. 서 론

동영상은 존재하는 잡음을 효과적으로 제거하기 위해 오랜 기간 동안 많은 방법들이 연구되었다. 잡음 제거를 위한 필터링 연산은 영상에 내재하는 세밀한 부분을 손상시키는 경향이 있으며, 영상의 사전적, 공간적, 구조적 연관성 등을 활용한 섬세한 작업이 필요하지만, 지역영상을 위한 섬세한 잡음 제거기법으로는 적응적 Wiener 필터, sigma 필터, 방향성 필터, bilateral 필터, non-local mean 필터 (NL 필터) 등과 함께 정규화 (regularization)에 기반을 두 반복적인 필터링 방법들이 좋은 결과를 보이는 것으로 알려져 왔다[1-9].

동영상은 동영상에서는 공간적 연관성과 함께 시간적 연관성을 활용한 사전 영역 3차원 필터링 기법들이 연구되었다. 주파수 영역의 3차원 필터링 기법에서는 discrete cosine transform (DCT) 혹은 fast Fourier transform (FFT)를 활용하여 잡음을 제거하고 있다[9-10]. 하지만, 일반적으로 이러한 주파수 영역기반의 3차원 필터링은 화소단위가 아닌 복록단위로 연산이
수행되므로 외부소리에 대부분의 전용적인 연산을 수행하기가 쉽지 않고 구현하기도 복잡한 측면이 있다. 따라서 효과적인 구현을 위해, 공간영역 필터(spatial filter)와 시간영역 필터(temporal filter)를 이용하여 3차원 필터링을 수행하는 연결형 방법들이 널리 사용되고 있다.

연결형 방법에는 크게 2가지 구성이 가능하다. 공간영역 필터는 먼저 '촬영하고 시간영역 필터를 수행하는 방안과 시간영역 필터를 먼저 수행하고 공간영역 필터를 수행하는 방안이 있다. 시간영역 필터링에서는 움직임 정보를 활용해야 하는데, 움직임 정보를 활용하는 수준에 따라서 움직임 보상 방법과 움직임 의 양만을 판단하여 적응적으로 필터링 하고 강도를 결정하는 방법이 있다. 움직임 적응적 필터링 방법은 움직임 추정과 보상과 같은 복잡한 연산을 필요로 하지 않으므로 구현이 간결해지는 장점이 있다.

본 논문에서는 시간영역 필터와 공간영역 필터를 효과적으로 구현하여 동영상에서의 점멸제거효과를 높이는데 관심을 기울였다. 공간영역 필터, 먼저 수행하는 구성과 시간영역 필터가 먼저 수행되는 구성의 결과를 결합하여 공간영역 필터링, 전처리, 공간영역 필터와 후처리 공간영역 필터로 구분한다. 전처리 공간영역 필터는 잡음에 강한 시간영역 필터링을 의해 적용된다. 전처리 공간영역 필터링 결과는 움직임 검출을 위한 물로만 사용하고, 시간영역 필터링에 사용되는 실제 입력은 같은 영상이라는 점이 기존의 구성과 큰 차이점이 있다. 후처리 공간영역 필터는 시간영역 필터링의 결과를 받아서 공간영역 필터링을 수행한다.

단순히 전처리 공간영역 필터와 후처리 공간영역 필터를 독립적으로 처리하면 공간영역 필터링을 위해서 기존 구성에 비해 2배의 연산이 필요하므로, 앞에서 단순한 NL 필터를 변형하여 '공통적' 요소는 한 번만 실행함으로써 추가적인 연산을 가능한 배제하여 분리된다. 전처리 및 후처리 공간영역 필터링을 수행한다.

본 논문은 다음과 같이 구성한다. 2장에서는 제안된 필터링 방법의 전제적인 구성을 다루고, 3장에서는 각 기능 혁신을 재구현하고 설명한다. 4장에서는 보이, V 장에서 결론을 벗는다.

II. 기존 구조의 비교

1. 기존의 구조

그림 1은 기존의 시간공간 점멸 제거 기법의 복잡도를 보여준다. 잡음에 포함된 입력영상 I(t)는 잡음의 표준 변치(σο)에 따라 공간영역 필터에 의해 먼저 제거된다. 공간영역 필터의 결과영상 Froid(t)는 시간 영량으로 시간영역 필터에 의해 추가적으로 잡음이 제거되여 총 결과영상 F_2(t)를 얻는다. F_2(t - T_P)는 이전 프레임 혹은 필드의 결과영상 결과 영상을 의미한다. 시간영역 필터링에서는 움직임의 양에 따라 적응적으로 필터링 강도를 조절하는 것이 중요하다. 움직임 검출기(motion detector)가 F_2(t)와 F_2(t - T_p)간의 움직임의 정도를 검출하는 역할을 담당한다. 움직임 검출기는 잡음의 영향을 최소화하기 위해 공간영역 필터링을 수행한 결과영상 F_2(t)를 활용한다. 움직임의 정도를 검출하고 시간 영역 필터링을 수행한 후 움직임 보상(motion compensation)이 사용되기도 한다.

공간영역 필터링은 잘 알려진 sigma 필터, fuzzy 필터, Wiener 필터, bilateral 필터, NL 필터 등이 사용될 수 있다. 그림 1에서 움직임 적응적 시공간 영역 필터는 식 (1)과 같이 표현된다.

\[F_2(t) = \alpha \cdot F_2(t) + (1 - \alpha) \cdot F_2(t - T_P) \] (1)

여기서 \(\alpha \)는 공간영역 필터링 결과영상과 이전 필터링 결과영상에 대한 가중치이다. 일반적으로 움직임이 빠르므로 \(\alpha \)는 1에 근사하여 \(F_2(t) \)는 \(F_2(t) \)에 근접한 값을 출력하고, 움직임이 거의 없음을 수시로 시간영역의 연산 성이 크므로 \(\alpha \)는 0에 근사하여 \(F_2(t) \)는 \(F_2(t - T_P) \)에 보다 근접한 값을 출력한다.

2. 제안하는 구조

그림 1과 같이 시간영역 필터링 노이즈에 공간영역 필터링을 수행하면, 움직임 검출창, 잡음으로 인한 영향
그림 2. 제안하는 시간필터 우선 연결형 시공간 잡음 제거 기법
Fig. 2. Proposed cascaded temporal-spatial noise reduction scheme.

물을 줄일 수 있는 장점이 있다. 하지만, 기존 구조와 같이 공간영역 필터가 우선 실행되면 영상의 경계나 텍스처 부분에서 영상에 내재하는 세밀한 부분을 손상시키는 부작용이 발생할 수 있다. 특히 움직임이 거의 없는 영상에서는 공간영역 유사성을 비해 시간영역 유사성이 횡단적 크지만, 미리 수행되는 공간영역 필터로 인해 영상에 내재된 세밀한 부분이 손상 받게 된다.

움직임 검출에서의 잡음의 영향을 줄이고 동시에 동영상에서 특별한 사물간 유사성을 충분히 반영하여 영상의 세밀한 부분을 최대한 보존하기 위하여 본 논문에서는 그림 2와 같은 연결형 시간공간 잡음 제거필터 구조를 제안한다.

제안하는 방법에서는 시간영역 필터를 공간영역 필터에 비해 우선 수행하여, 공간영역 필터를 전처리 공간영역 필터와 후처리 공간영역 필터로 구분한다. 전처리 공간영역 필터는 움직임 검출에서 잡음의 영향을 최대한 줄이기 위해 기존 구조의 장점은 그대로 살린다. 하지만, 시간영역 필터는 잡음의 영향을 대상으로 필터링하기 때문에 사물간 연관성이 매우 강한 동영상에서 영상의 세밀함을 공간영역 평탄화 작업으로 잃어버리지 않고 잘 보존한다.

NL 필터에 기반을 둔 공간영역 필터는 자기 유사성을 탐색하는 부분과 가중치를 극하는 부분으로 구분하여 후처리 공간영역 필터에서의 미리 얻어진 자기 유사성 탐색 결과를 다시 계산하지 않고 가중치만 간접적으로 조정하여 극하는 연산만을 수행한다. 즉, 본 논문에서의 전처리 및 후처리 필터가 실제로는 공동된 정보를 활용함으로써 연산의 효율을 높일 수 있다. 후처리 공간영역 필터의 필터링 강도는 시간영역 필터와 상관없이 자기 유사성 탐색 결과에 영향을 받게 된다. 시간적 연관성이 강한 영역에서는 시간영역 필터링이 강하게 수행되므로 공간영역 필터의 강도는 약하게 하고, 자기 유사성을 활용한 공간영역 필터링으로 인해 영상의 과도한 변점을 줄일 수 있다. 제안된 구조에서도 움직임 추정과 보상부가 추가되며 움직임 보상기반 시간영역 필터로 손쉽게 확장가능하다.

III. 제안하는 방법

1. 본 논문에서는 앞서 설명한 NL 필터를 그림 3과 같이 확산단위의 자기 유사성 탐색부(self-similarity search)와 가중치(weighting factors)를 적용하는 공간영역 필터로 구성하여 이해함으로써 자기 유사성 탐색부의 결과를 전처리 필터와 후처리 필터에서 공동적으로 활용한다. 식 (2)~(6)은 NL필터를 수식으로 나타낸 것이다. 식 (2)에서 g(n)는 잡음이 있는 입력 화소를 의미하고, \(\tilde{m}_F(n) \)는 필터링 결과를 의미한다. NL필터에서는 일직선 \((2T+1) \times (2T+1)\) 윤도우 내의 화소들에 대해 \(w(k,n) \)의 가중치를 적용하여 필터링한 결과를 얻는데, 이에 구현되는 \((2T+1) \times (2T+1)\) 크기의 가중치 마스크 \(w(k,n) \)는 \((2F+1) \times (2F+1)\) 윤도우 크기의 자기 유사성 탐색에 의해 얻어진다. 그림 4는 \(T = 2, F = 1 \)인 경우 자기 유사성 탐색부의 동작 예로 보여준다. 그림에서는 가중치를 정수로 표현하기 위해 가중치의 최대값을 31으로 정하고 선형적으로 표현했다.

\[J(n) \xrightarrow{\text{Spatial analysis}} \text{(Self-similarity search for every pixels)} \xrightarrow{\text{Weighting factors}} \text{(w(k,n))} \xrightarrow{\text{Weighted Spatial Average}} F_R(n) \]

그림 3. NL 필터의 기능 분류
Fig. 3. Functional division of the NL filter.

\[\begin{align*} 0 & \quad 1 \quad 5 \quad 9 \quad 15 \\ 2 & \quad 3 \quad 9 \quad 30 \quad 10 \\ 9 & \quad 16 \quad 31 \quad 28 \quad 22 \\ 11 & \quad 20 \quad 31 \quad 20 \quad 17 \\ 8 & \quad 15 \quad 10 \quad 8 \quad 7 \end{align*} \]

그림 4. 자기 유사성 탐색부의 확산단위 출력 예
Fig. 4. Example of pixel-wise output using the self-similarity search \((T = 2, F = 1)\).
\[\hat{m}_r(n) = \frac{1}{W(n)} \sum_{k \in N} w(k,n)g(n+k) \quad (2) \]

\[W(n) = \sum_{k \in N} w(k,n) \quad (3) \]

\[w(k,n) = \begin{cases} e^{ \frac{-d(k,n)}{k^2} }, & k \neq (0,0) \\ \max w(k,nk \neq (0,0)), & k = (0,0) \end{cases} \quad (4) \]

\[d(k,n) = \frac{1}{A} \sum_{p \in N_p} a(p)(g(n+p) - g(n+k+p))^2 \quad (5) \]

\[A = \sum_{p \in N_p} a(p) \quad (6) \]

\[a(p) = \frac{1}{(2d_p + 1)^2} : d_p = \max (|p_1|,|p_2|) \quad (7) \]

\[N = \{(k_1,k_2) : -T \leq k_1 \leq T , -T \leq k_2 \leq T \} \quad (8) \]

\[N_p = \{(p_1,p_2) : -F \leq p_1 \leq F , -F \leq p_2 \leq F \} \quad (9) \]

식 (5)에서 오차의 적합 연산은 연산의 간결성을 위해 오차의 절대값 연산으로 대체될 수 있으며, 식 (6)~(7)의 a(p)는 look-up-table (LUT)를 이용해서 간결하게 처리될 수 있다.

그림 5는 화소단위의 자기 유사성 탐색결과가 전처리 공간영역 필터링 뿐만 아니라, 가중치 조절부를 통해 후처리 공간영역 필터링에도 활용될 보인다.

\[\begin{array}{c}
\text{Spatial analysis} \\
(\text{Self-similarity search for every pixels})
\end{array} \xrightarrow{\text{Weighting factors \(w(k,n) \)}} \begin{array}{c}
\text{Weight Mask Updater} \\
\alpha(n)
\end{array} \xrightarrow{\text{Pre-spatial filter \(w * f \)}} \begin{array}{c}
\text{Weight Mask Updater} \\
\hat{w}(k,n)
\end{array} \xrightarrow{\text{Post-spatial filter \(\hat{w} * F_r \)}} \begin{array}{c}
\text{Common utilization of the spatial analysis part contained in the NL filter.}
\end{array} \]

\[I(n) \xrightarrow{\alpha(n)} \begin{array}{c}
\text{Weighting factors} \\
\alpha(n)
\end{array} \xrightarrow{\text{Pre-spatial filter}} \begin{array}{c}
\text{Filtering} \\
F_r(n)
\end{array} \xrightarrow{\text{Post-spatial filter}} \begin{array}{c}
\text{Weight Mask} \\
\hat{w}(k,n)
\end{array} \xrightarrow{\text{Weight Mask Updater}} \begin{array}{c}
\alpha(n)
\end{array} \xrightarrow{\text{Spatial analysis}} \begin{array}{c}
\text{Spatial analysis} \\
(\text{Self-similarity search for every pixels})
\end{array} \]

그림 5. NL필터에 포함된 공간영역 해석의 공동 사용

Fig. 5. Common utilization of the spatial analysis part contained in the NL filter.

2. 전처리 공간영역 필터를 가진 시간영역 필터

식 (10)은 화소단위로 수행되는 시간영역 필터를 나타낸 것이다. 여기서 \(I(n) \)는 임력이 있는 영역증상이고, \(F_r(n; t - T_p) \)는 이전 프레이밍 (혹은 필드) 영상을 의미하고, \(F_r(n; t) \)는 시간영역 필터링된 영상을 의미한다. \(\alpha \)는 시간영역 필터링의 가중치를 나타내는 것으로, 식 (11)~(13)에 의해 정의되는 음직업 곡물에 의해 결정된다. 식 (11)~(13)에 \(F_r(n; t) \)는 전처리 공간영역 필터에 의해 입력을 결과영상이고, \(\phi(r) \)는 중심화소와의 거리에 따른 가중치이고, \(N_F \)는 중심 화소를 기준으로 인접한 화소들의 위치들을 가리키는 집합이다. 그림 6은 시간영역 필터를 위한 \(\alpha \) 가중치 곡선의 예를 보여준다. 그림과 같이 구간적으로 선형화된 곡선을 사용하거나 이와 유사한 비선형 곡선을 사용할 수 있다. \(\alpha_1, \alpha_2, P_1, P_2 \)는 사용자에 의해 정의되거나 임의의 표준편차를 고려해 정의한다. 일반적으로 \(\alpha_2 = 1 \)이며, \(\alpha_1 \)은 임의의 표준편차에 반비례하며, \(P_1, P_2 \)는 임의의 표준편차에 비례하는 값을 가지는 설정적으로 정의된 상수이다.

\[\phi(r) \]는 중심화소와의 거리에 따른 가중치로써 중심화소와의 거리가 멀어질수록 작은 값을 가진다. \(\alpha_1, \alpha_2, P_1, P_2 \)는 사용자에 의해 정의되거나 임의의 표준편차를 고려해 정의한다. 일반적으로 \(\alpha_2 = 1 \)이며, \(\alpha_1 \)는 임의의 표준편차에 반비례하며, \(P_1, P_2 \)는 임의의 표준편차에 비례하는 값을 가지는 설정적으로 정의된 상수이다.

\[F_r(n; t) = \alpha \cdot I(n; t) + (1 - \alpha) \cdot F_r(n; t - T_p) \quad (10) \]

\[\alpha = \begin{cases} \frac{\alpha_1}{P_2 - P_1} (|e| - P_1) + \alpha_1 & , |e| \leq P_1 \\ \frac{\alpha_2 - \alpha_1}{P_2 - P_1} (|e| - P_2) + \alpha_1 & , P_2 < |e| \leq P_2 \\ \alpha_2 & , |e| > P_2 \end{cases} \quad (11) \]

그림 6. 시간영역 필터를 위한 가중치 곡선의 예

Fig. 6. Example of weighting curve for temporal filtering.
$$e = \sum_{t = 0}^{T_n} \phi(t) \cdot |F_p(n + r_1 + t) - F_p(n + r_2 - T_p)|$$

$$N_n = \{(r_1, r_2) \mid R \leq r_1 \leq R, -R \leq r_2 \leq R\}$$

3. 가중치 마스크 업데이트와 후처리 공간영역 필터
가중치 조절부(Weight mask updater)는 시간영역 필터의 강도를 참고하여 후처리 공간영역 필터의 강도를 조절적으로 조절하는 역할을 한다. 식 (14)는 \(I(n; t)\)에 포함된 임의의 분산을 \(\sigma_n^2\)라고 하고, 시간영역 필터링을 수행한 영상 \(F_p(n; t)\)에 대하여, 임의의 분산을 \(\sigma_n^2\)라고 할 때, 시간영역 필터링에 사용된 가중치 \(\alpha(n)\)를 바탕으로 \(\sigma_n^2(n)\)을 가산적으로 모델링한 것이다. \(H(\alpha(n))\)는 \(\alpha(n)\)과 비례관계를 가지다. \(\alpha(n)\)이 0에 가까울수록 강한 시간영역 필터링이 수행된 것으로, 낮은 경우는 적게 된다. 따라서 후처리 공간영역 필터는 보다 약한 필터링 정도로 조정된다. \(\alpha(n)\)는 화소 별로 다른 값이므로, \(\sigma_n^2(n)\) 역시 화소 별로 다른 값이 된다. \(H(\alpha(n))\)는 \(\alpha(n)\)에 따른 \(\sigma_n^2(n)\)과 \(\sigma_n^2\)의 비를 결정하는 지수를 가지며, 식 (15)와, 그림 7은 \(H(\alpha(n))\)의 한 예를 보여준다. 식 (15)에서 \(P\)는 실질적으로 결정되는 상수이다.

$$\sigma_n^2(n) = \sigma_n^2 \cdot H(\alpha(n))$$

$$H(\alpha(n)) = \alpha(n)^P, \quad 0 \leq H(\alpha(n)) \leq 1$$

후처리 공간영역 필터의 강도를 조절하는 방법은 조정된 임의의 분산 \(\sigma_n^2(n)\)를 활용하여 NL필터를 포함한 임의의 공간영역 필터링을 재수행하는 방안이 있으나 재간섭을 추가로 지불해야 하는 단점이 있다. 본 논문에서는 그림 5에서 언급한 바와 같이 전처리 공간영역 필터를 사용하여 필터링 기반의 마스크 \(w(k; n)\)을 재조정하여 후처리 공간영역 필터의 필터링 기반의 마스크 \(\hat{w}(k; n)\)을 구하는 방안을 제안한다. 식 (16)～(17)은 전처리 공간영역 필터링 기반의 마스크 \(w(k; n)\)에서 후처리 공간영역 필터링 기반의 마스크 \(\hat{w}(k; n)\)를 얻는 방안이다. \(H(\alpha)\)가 0으로 근접하면 시간영역 필터링이 강하게 수행되었다는 의미로 '중심화소를 제외한 인접화소의 가중치' \(\hat{w}(k; k = (0, 0))\)가 0으로 근접하여 공간영역 필터링의 강도가 약화된다. \(H(\alpha)\)가 1로 근접하면 시간영역 필터링이 매우 약하게 수행되었다는 의미로 \(\hat{w}(k; n) = w(k; n)\)이 되어서 후처리 공간영역 필터링이 주된 필터링 역할을 담당한다.

$$\hat{w}(k) = \begin{cases} \frac{w(k) \cdot H(\alpha)}{1 - w(k) + w(k) \cdot H(\alpha)}, & k \neq (0, 0) \\ \frac{1}{1 - w_T}, & k = (0, 0) \end{cases}$$

$$\hat{w}_T = \sum_{k = (0, 0)} w(k)$$

식 (16)은 중심 화소를 제외한 인접 화소의 가중치가 식 (18)과 같이 적용된다. \(P\)의 값은 \(P\)의 값과 \(H(\alpha)\)의 값으로부터 추정된다. \(\frac{\sigma_n^2}{\sigma_L}\)은, 임의의 있는 영상의 극값 분산을 의미한다. 식 (18)은 임의의 있는 영상 분산에 대한 가중치가 크고, 임의의 임의의 입력 회로에 대한 가중치가 작아지는 의미이다. 식 (18)은 시간영역 필터에서 수행된 후 얻어진 영상에 식 (18)을 적용한 것으로, 시간영역 필터링 후 얻아진 영상의 극값 분산 \(\sigma_n^2\)은 필터링 함수 영상의 분산 \(\sigma_n^2\)에서 필터링으로 인해 감소한 값, 분산 \((\sigma_n^2 - \sigma_L^2)\)은 필터링 함수 영상의 분산 \(\sigma_L^2\)에서 필터링으로 인해 감소한 값을 분산 \((\sigma_n^2 - \sigma_L^2)\)을 빼기로 추정하여 식 (20)과 같은 관계를 얻었다.
모의 실험에서는 MPEG-4 테스트 영상을 사용했다. 원 영상에 평균이 0이고 점음분산이 16인 AWGN을 절고한 후 각 채널별로 독립적인 필터링을 수행하였다. 공정한 비교를 위해 점음 분산은 알고 있다고 가정하고 모든 임계값은 모든 영상에서 동일한 값으로 적용했다. 실험에서 사용된 시간영역 필터링 임계값은 \(P_1 = 6 \), \(P_2 = 77 \), \(a_1 = 1/16 \), \(a_2 = 1 \)이다. \(\phi(t) \)를 위해서는 \([-1 0 1 2 2 1 2 1 1] \)의 3x3 윈도우를 사용했다. 점음분산 폐기기에서는 \(P = 2.0 \)을 사용했다. 비교 대상이 되는 L ms의 적용 Wiener 필터링 방법에서 윈도우 크기는 5x5로 설정했으며, NL필터의 윈도우 크기는 \(T = 2 \), \(\sigma = 1 \)을 사용했다.

표 1은 각 영상에서 다양한 필터링 방법에 따른 PSNR 결과를 비교한 것이다. 동영상 내재된 시간영역 연관성을 충분히 고려하여 필터링을 수행함으로써 전역 음직임이 크지 않은 영상인 경우 점음영향에 비해 최대 7.2 dB, NL필터결과에 비해 최대 2.4 dB의 PSNR 향상을 얻을 수 있었다. 전역 음직임이 큰 영상에 대해서는 음직임 향상이나 보정을 사용하지 않으므로 공간 영역필터와 유사한 PSNR 결과를 보인다.

그림 8은 시간영역 필터링에서의 음직임 작용적 가중치 적용의 예를 보여준다. 전역 보정 영상과 현재 잡음 영상간의 음직임 영역을 판단하여 결정한 가중치를 그림으로 표현한 것이 그림 8(c)이다. 밝은 부분이 음직임이 심한 화소이고, 어두운 부분이 음직임이 거의 없는

표 1. PSNR 결과 비교

<table>
<thead>
<tr>
<th>PSNR_Y [dB]</th>
<th>Noisy</th>
<th>L ms</th>
<th>NL</th>
<th>Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>container ship</td>
<td>36.1</td>
<td>38.2</td>
<td>38.6</td>
<td>40.5</td>
</tr>
<tr>
<td>mother & daughter</td>
<td>36.1</td>
<td>39.7</td>
<td>40.5</td>
<td>41.5</td>
</tr>
<tr>
<td>foreman</td>
<td>36.1</td>
<td>38.4</td>
<td>39.2</td>
<td>38.8</td>
</tr>
<tr>
<td>coast guard</td>
<td>36.1</td>
<td>36.9</td>
<td>37.3</td>
<td>37.1</td>
</tr>
<tr>
<td>silent voice</td>
<td>36.1</td>
<td>37.9</td>
<td>38.5</td>
<td>40.7</td>
</tr>
<tr>
<td>akiyo</td>
<td>36.1</td>
<td>40.4</td>
<td>40.9</td>
<td>43.3</td>
</tr>
<tr>
<td>hall monitor</td>
<td>36.1</td>
<td>39.0</td>
<td>39.8</td>
<td>40.7</td>
</tr>
<tr>
<td>news</td>
<td>36.1</td>
<td>39.3</td>
<td>40.0</td>
<td>42.2</td>
</tr>
<tr>
<td>stefan</td>
<td>36.1</td>
<td>37.6</td>
<td>38.1</td>
<td>38.2</td>
</tr>
<tr>
<td>mobile & calendar</td>
<td>36.1</td>
<td>36.9</td>
<td>37.5</td>
<td>37.5</td>
</tr>
<tr>
<td>평균</td>
<td>36.1</td>
<td>38.4</td>
<td>39.1</td>
<td>40.0</td>
</tr>
</tbody>
</table>
제가 나면서 영상에 내재된 세밀한 부분을 잃게 된다. 따라서 이러한 공간영역 필터로 먼저 필터링을 수행한 후에 시간영역 필터를 수행하면, 움직임 검출률의 잡음의 효과는 줄일 수 있지만, 동영상에서 매우 깊게 나타나는 시간적 유사성을 최대한 활용하지 못하는 결과를 초래할 수도 있다. 즉, 그림 9-11은 연결형 시공간조잡 제거기법에서 공간영역필터가 먼저 수행되면 영상의 세밀한 부분을 잃을 수도 있음을 간접적으로 보여준다고 볼 수 있다. 반면, 제안된 방법에서는 움직임 링치 없는 영역에서의 시간적 유사성을 충분히 활용함으로써 영상에 내재된 세밀한 부분을 살려낼 수 있는 장점이 있다.

V. 결론

움직임 적용적 시간영역 필터와 분리된 전처리 및 후처리 공간영역 필터를 활용하여 잡음이 있는 동영상의 화질을 개선하는 방법을 제안하였다. 전처리 공간영역 필터는 움직임 검출에 있어서 잡음의 영향을 완화시켜 주는 역할을 하고, 후처리 공간영역 필터는 남아있는 잡음을 공간영역에서 제거한다. 일반적으로 동영상은 시간적인 연관성이 매우 크고, 복원된 영상을 재생할 경우 시간적으로 안정된 느낌을 주는 것이 시각적으로 매우 중요하므로 제안된 방법은 동영상의 주관적인 화질을 매우 높여준다. 후처리 공간영역 필터는 전처리 공간영역 필터에서 구해놓은 가중치 마스크를 단순히 업데이트하는 방식으로 처리되므로 연산의 효율성을 높일 수 있다.

참고 문헌

저자 소개

김 성 득(정회원)
1994년 경북대학교 전자공학과
학사 졸업
1996년 한국과학기술원 전기 및 전자공학과 석사 졸업
2000년 한국과학기술원 전기 및 전자공학과 박사 졸업
2000년~2003년 LG전자 차세대 단말 연구소
2003년~현재 인동대학교 정보전자공학부 교수
주관심분야 : 영상신호처리, 영상시스템

 김 성 득(정회원)
1994년 경북대학교 전자공학과
학사 졸업
1996년 한국과학기술원 전기 및 전자공학과 석사 졸업
2000년 한국과학기술원 전기 및 전자공학과 박사 졸업
2000년~2003년 LG전자 차세대 단말 연구소
2003년~현재 인동대학교 정보전자공학부 교수
주관심분야 : 영상신호처리, 영상시스템

임 경 원(정회원)
1990년 고려대학교 전자공학과
학사 졸업
1992년 한국과학기술원 전기 및 전자공학과 석사 졸업
1998년 한국과학기술원 전기 및 전자공학과 박사 졸업
1997년~2001년 LG전자 종합기술원 선임 연구원
2001년~2006년 Conexant systems Inc., USA, Principle engineeer
2006년~현재 LG전자 수석 연구원
주관심분야 : 영상신호처리, 영상 시스템, 반도체