DOI QR코드

DOI QR Code

Diamond Like Carbon Coating on WC Core Pin for Injection Molding of Zirconia Optical Ferrule

지르코니아 광페룰 사출성형용 WC 코아 핀의 Diamond Like Carbon 코팅

  • Park, Hyun-Woo (Department of Materials Science & Engineering, Research Institute for Functional Surface Engineering, Chonnam National University) ;
  • Jeong, Se-Hoon (Department of Materials Science & Engineering, Research Institute for Functional Surface Engineering, Chonnam National University) ;
  • Kim, Hyun-Young (Department of Materials Science & Engineering, Research Institute for Functional Surface Engineering, Chonnam National University) ;
  • Lee, Kwang-Min (Department of Materials Science & Engineering, Research Institute for Functional Surface Engineering, Chonnam National University)
  • 박현우 (전남대학교 공과대학 신소재공학부, 기능성 표면공학연구소) ;
  • 정세훈 (전남대학교 공과대학 신소재공학부, 기능성 표면공학연구소) ;
  • 김현영 (전남대학교 공과대학 신소재공학부, 기능성 표면공학연구소) ;
  • 이광민 (전남대학교 공과대학 신소재공학부, 기능성 표면공학연구소)
  • Received : 2010.10.08
  • Accepted : 2010.10.20
  • Published : 2010.11.27

Abstract

A diamond-like carbon (DLC) film deposited on a WC disk was investigated to improve disk wear resistance for injection molding of zirconia optical ferrule. The deposition of DLC films was performed using the filtered vacuum arc ion plating (FV-AIP) system with a graphite target. The coating processing was controlled with different deposition times and the other conditions for coating, such as input power, working pressure, substrate temperature, gas flow, and bias voltage, were fixed. The coating layers of DLC were characterized using FE-SEM, AFM, and Raman spectrometry; the mechanical properties were investigated with a scratch tester and a nano-indenter. The friction coefficient of the DLC coated on the WC was obtained using a pin-on-disk, according to the ASTM G163-99. The thickness of DLC films coated for 20 min. and 60 min. was about 750 nm and 300 nm, respectively. The surface roughness of DLC films coated for 60 min. was 5.9 nm. The Raman spectrum revealed that the G peak of DLC film was composed of $sp^3$ amorphous carbon bonds. The critical load (Lc) of DLC film obtained with the scratch tester was 14.6 N. The hardness and elastic modulus of DLC measured with the nano-indenter were 36.9 GPa and 585.5 GPa, respectively. The friction coefficient of DLC coated on WC decreased from 0.2 to 0.01. The wear property of DLC coated on WC was enhanced by a factor of 20.

Acknowledgement

Supported by : 한국연구재단

References

  1. P. W. Shum, K. Y. Li and Z. F. Zhou, Tribology Series, 40, 265 (2002).
  2. X. Z. Ding, B. K. Tay, S. P. Lau, P. Zhang and X. T. Zeng, Thin Solid Films, 408, 183 (2002). https://doi.org/10.1016/S0040-6090(02)00145-1
  3. G. Wiech, N. Auer, A. Simunek, J. Vackar, A. Hammerschmidt and G. Rittmayer, Diam. Relat. Mater., 6, 944 (1997). https://doi.org/10.1016/S0925-9635(97)00005-8
  4. G. Fedosenko, A. Schwabedissen, J. Engemann, E. Braca, L. Valentini and J. M. Kenny, Diamond Relat. Mater., 11, 1047 (2002). https://doi.org/10.1016/S0925-9635(01)00612-4
  5. Y. Ozmen, A. Tanaka and T. Sumiya, Surf. Coating. Tech., 133, 455 (2000). https://doi.org/10.1016/S0257-8972(00)00929-4
  6. K. R. Lee and K. Y. Eun, J. Kor. Inst. Met. & Mater., 6(4), 345 (1993) (in Korean).
  7. D. R. McKenzie, Rep. Progr. Phys., 59(12), 1611 (1996). https://doi.org/10.1088/0034-4885/59/12/002
  8. P. J. Fallon, V. S. Veerasamy, C. A. Davis, J. Robertson, G. A. J. Amaratunga, W. I. Milne and J. Koskinen, Phys. Rev. B, 48(7), 4777 (1993). https://doi.org/10.1103/PhysRevB.48.4777
  9. G. M. Pharr, D. L. Callahan, S. D. McAdams, T. Y. Tsui, S. Anders, A. Anders, J. W. Ager, I. G. Brown, C. S. Bhatia, S. R. P. Silva and J. R. Robertson, Appl. Phys. Lett., 68(6), 779 (1996). https://doi.org/10.1063/1.116530
  10. B. T. Kelly, Physics of Graphite, 1st ed., p.477, Applied Science Publishers, London, UK, (1981).
  11. J. W. Jou, K. Reichelt, K. Schmidt and B. Dischler, J. Appl. Phys., 65(10), 3914 (1989). https://doi.org/10.1063/1.343355
  12. A. Grill, B. S. Meyerson and V. V. Patel, IBM J. Res. Dev., 34(6), 849 (1990). https://doi.org/10.1147/rd.346.0849
  13. K. Kurihara, K. Sasaki, M. Kawarada and N. Koshino, Appl. Phys. Lett., 52(6), 437 (1988). https://doi.org/10.1063/1.99435
  14. W. K. Choe, W. Choi, H. J. Kim and S. E. Nam, Kor. J. of Mater. Res., 7(7), 582 (1997) (in Korean).
  15. S. Kashi, H. Kang and J. W. Rabalias, Phys. Rev. Lett., 59(1), 75 (1987). https://doi.org/10.1103/PhysRevLett.59.75
  16. D. L. Pappas, K. L. Saenger, J. Bruley, W. Krakow, J. J. Cuomo, T. Gu and R. W. Collins, J. Appl. Phys., 71(11), 5675 (1992). https://doi.org/10.1063/1.350501
  17. H. J. Scheibe, D. Drescher, B. Schultrich, M. Falz, G. Leonhardt and R. Wilberg, Surf. Coating. Tech., 85(3), 209 (1996). https://doi.org/10.1016/0257-8972(95)02648-7
  18. L. Y. Huang, J. Lu and K. W. Xu, Mater. Sci. Eng., 373, 45 (2004). https://doi.org/10.1016/j.msea.2003.12.032
  19. K. S. Shim and S. Y. Lee, Trans. KIEE, 48C(6), 403 (1999) (in Korean). ISSN : 1975-8359.
  20. C. S. Lee, J. K. Shin, J. K. Kim, K. R. Lee and K. H. Yoon, J. Kor. Vacuum Soc., 11(1), 8 (2002) (in Korean). ISSN : 1225-8822.
  21. J. Robertson, Mater. Sci. Eng. R Rep., 37, 129 (2002). https://doi.org/10.1016/S0927-796X(02)00005-0
  22. A. C. Ferrari and J. Robertson, Phys. Rev. B, 61(20), 14095 (2000). https://doi.org/10.1103/PhysRevB.61.14095
  23. G. Bradfield, Use in Industry of Elasticity Measurements in Metals with the Help of Mechanical Vibrations, 1st ed., p.160, Her Majesty's Stationary Office, London, UK, (1964).
  24. K. Abdelouahdi, C. Sant, C. Legrand-Buscema, P. Aubert, J. Perriere, G. Renou and Ph. Houdy, Surf. Coating. Tech., 200(22), 6469 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.015