Characteristics of SiO2/Si Quantum Dots Super Lattice Structure Prepared by Magnetron Co-Sputtering Method

마그네트론 코스퍼터링법으로 형성한 SiO2/Si 양자점 초격자 구조의 특성

  • Park, Young-Bin (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Shin-Ho (School of Materials Science and Engineering, Pusan National University) ;
  • Ha, Rin (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Hyun-Ju (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Jung-Chul (Solar Cells Research Center, Korea Institute of Energy Research) ;
  • Bae, Jong-Seong (Busan center, Korea Science Institute) ;
  • Kim, Yang-Do (School of Materials Science and Engineering, Pusan National University)
  • 박영빈 (부산대학교 재료공학부) ;
  • 김신호 (부산대학교 재료공학부) ;
  • 하린 (부산대학교 재료공학부) ;
  • 이현주 (부산대학교 재료공학부) ;
  • 이정철 (한국에너지기술 연구원 태양광 연구단) ;
  • 배종성 (한국 기초 과학 연구원 부산센터) ;
  • 김양도 (부산대학교 재료공학부)
  • Received : 2010.10.11
  • Accepted : 2010.10.22
  • Published : 2010.11.27


Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources. The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use of materials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorption of incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap. Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the $1^{st}$ and $2^{nd}$ generation solar cells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using an Si quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an $SiO_x$ matrix system was investigated and analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QD SLS) were prepared by alternating deposition of Si rich oxide (SRO; $SiO_x$ (x = 0.8, 1.12)) and $SiO_2$ layers using RF magnetron co-sputtering and subsequent annealing at temperatures between 800 and $1,100^{\circ}C$ under nitrogen ambient. Annealing temperatures and times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-ray photoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at $1,100^{\circ}C$ for one hour. Transmission electron microscopy (TEM) images clearly showed SRO/$SiO_2$ SLS and Si QDs formation in each 4, 6, and 8 nm SRO layer after annealing at $1,100^{\circ}C$ for two hours. The systematic investigation of precipitation behavior of Si QDs in $SiO_2$ matrices is presented.


Supported by : 한국연구재단


  1. M. A. Green, Sol. Energ., 74, 181 (2003).
  2. R. L. Mitchell, C. E. Eitt, R. King and D. Ruby, in Proceedings of the 29th IEEE Photovoltaic Specialists Conference, (New Orleans, Louisiana, May 2002) p.1444.
  3. G. Conibeera, M. Green, R. Corkish, Y. Cho, E. -C. Cho, C. -W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav and K. -L. Lin, Thin Solid Films, 511-512, 654 (2006).
  4. M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion, p.33-67, Springer, Berlin, Germany (2003).
  5. J. Nelson, The Physics of Solar Cells, p.289, Imperial College Press, London, UK (2003).
  6. L. Pavesi, L. D Negro, C. Mazzoleni, G. Franzo and F. Priolo, Nature, 408, 440 (2000).
  7. Z. H. Lu, D. J. Lockwood and J. M. Baribeau, Nature, 378, 359 (1995).
  8. L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey and D. J. Lockwood, Appl. Phys. Lett., 72, 43 (1998).
  9. G. F. Grom, D. J. Lockwood, , J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch and L. Tsybeskov, Nature, 407, 358 (2000).
  10. G. Conibeer, M. Green, E. -C. Cho, D. Konig, Y. -H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao and D. Mansfield, Thin Solid Films, 516, 6748 (2008).
  11. M. Zacharias, J. heitmann, R. Scholz, U. Kahler, M. Schmidt and J. Blasing, Appl. Phys. Lett., 80, 661 (2002).
  12. Y. -R. Lee, Md. M. Alam, J. -Y. Kim, W. -G. Jung and Sung-Dai Kim, Kor. J. Mater. Res., 20(10), 550 (2010).
  13. I. P. Lisovkii, V. G. Litovchenko, V. B. Lozinskii, S. I. Frolov, H. Fleitner, W. Fussel and E. G. Schmidt, J. Non-Cryst. Solids, 187, 91 (1995).
  14. I. P. Lisovkii, V. G. Litovchenko, V. B. Lozinskii and G. I. Steblovskii, Thin Solid Films, 213, 164 (1992).
  15. P. G. Pai, S. S. Chao, Y. Takagi and G. Lucovsky, J. Vac. Sci. Technol. A, 4, 689 (1986).
  16. J. U. Schmidt and B. Schmidt, Mater. Sci. Eng. B, 101, 28 (2003).
  17. A. Lehmann, L. Schumann and K. Hubner, Phys. Status Solidi B, 117, 689 (1983).
  18. F. G. Bell and L. Ley, Phys. Rev. B, 37, 8383 (1988).
  19. A. Lehmann, L. Schumann and K. Hubner, Phys. Status Solidi B, 121, 505 (1984).
  20. M. Zacharias, J. Heitmann, L. Yi, R. Scholz, M. Reiche and U. Cosele, in Proceedings of SPIE (Seattle, WA, July 2002), Vol. 4808, p.28.
  21. F. Rochet, G. Dufour, H. Roulet, B. Pelloie, J. Perriere, E. Fogarassy, A. Slaoui and M. Froment, Phys. Rev. B, 37, 6468 (1988).
  22. E. Cho, S. Park, X. Hao, D. Song, G. Conibeer, S. Park and M. A. Green, Nanotechnology, 19, 245201 (2008).
  23. G. Hollinger and F. J. Himpsel, Appl. Phys. Lett., 44, 93 (1984).