DOI QR코드

DOI QR Code

Fabrication of Silicon Quantum Dots in Si3N4 Matrix Using RF Magnetron Co-Sputtering

RF 마그네트론 코스퍼터링을 이용한 Si3N4 매트릭스 내부의 실리콘 양자점 제조연구

  • Ha, Rin (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Shin-Ho (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Hyun-Ju (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Young-Bin (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Jung-Chul (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Bae, Jong-Seong (Busan center, Korea Science Institute) ;
  • Kim, Yang-Do (School of Materials Science and Engineering, Pusan National University)
  • 하린 (부산대학교 재료공학부) ;
  • 김신호 (부산대학교 재료공학부) ;
  • 이현주 (부산대학교 재료공학부) ;
  • 박영빈 (부산대학교 재료공학부) ;
  • 이정철 (한국에너지기술연구원 태양광 연구단) ;
  • 배종성 (한국기초과학연구원 부산센터) ;
  • 김양도 (부산대학교 재료공학부)
  • Received : 2010.10.11
  • Accepted : 2010.10.29
  • Published : 2010.11.27

Abstract

Films consisting of a silicon quantum dot superlattice were fabricated by alternating deposition of silicon rich silicon nitride and $Si_3N_4$ layers using an rf magnetron co-sputtering system. In order to use the silicon quantum dot super lattice structure for third generation multi junction solar cell applications, it is important to control the dot size. Moreover, silicon quantum dots have to be in a regularly spaced array in the dielectric matrix material for in order to allow for effective carrier transport. In this study, therefore, we fabricated silicon quantum dot superlattice films under various conditions and investigated crystallization behavior of the silicon quantum dot super lattice structure. Fourier transform infrared spectroscopy (FTIR) spectra showed an increased intensity of the $840\;cm^{-1}$ peak with increasing annealing temperature due to the increase in the number of Si-N bonds. A more conspicuous characteristic of this process is the increased intensity of the $1100\;cm^{-1}$ peak. This peak was attributed to annealing induced reordering in the films that led to increased Si-$N_4$ bonding. X-ray photoelectron spectroscopy (XPS) analysis showed that peak position was shifted to higher bonding energy as silicon 2p bonding energy changed. This transition is related to the formation of silicon quantum dots. Transmission electron microscopy (TEM) and electron spin resonance (ESR) analysis also confirmed the formation of silicon quantum dots. This study revealed that post annealing at $1100^{\circ}C$ for at least one hour is necessary to precipitate the silicon quantum dots in the $SiN_x$ matrix.

Acknowledgement

Supported by : 한국연구재단

References

  1. M. A. Green, Third Generation Photovoltaics : Advanced Solar Energy Conversion, 12th ed., p.2-3, Springer, Berlin, Germany (2006).
  2. T. M. Bruton, G. Luthardt, K. -D. Rasch, K. Roy, I. A. Dorrity, B. Garrard, L. Teale, J. Alonso, U. Ugalde, K. Declerq, J. Nijs, J. Szlufcik, A. Rauber, W. Wettling and A. Vallera, Conference Record, 14th European Photovoltaic Solar Energy Conference (June/July 1997), Barcelona p.11-16.
  3. D. E. Carlson and C. R. Wronski, Top. Appl. Phys., 36, 287 (1985).
  4. J. Nelson, The Physics of Solar Cells, p.289-323, Imperial College Press, London, UK (2003).
  5. ARC Photovoltaics Centre of Exceleence, 2008 Annual Report, p.69-70 (2009).
  6. ARC Photovoltaics Centre of Exceleence, 2009 Annual Report, p.77 (2010).
  7. E.-C. Cho, M. A. Green, G. Conibeer, D. Y. Song, Y. H. Cho, G. Scardera, S. J. Huang, S. Park, X. J. Hao, Y. D. Huang and L. V. Dao, Adv. Opt. Electron. Microsc., 2007, 69578 (2007).
  8. H. J. Kim, J. Moon, J. S. Cho, S. H. Park, K. H. Yoon, J. Song, B. O and J. C. Lee, Kor. J. Mater. Res., 20(6), 289 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.6.289
  9. G. Conibeer, M. A. Green, R. Corkish, Y.-H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao and D. Mansfield, Thin Solid Films, 516(20), 6748 (2008). https://doi.org/10.1016/j.tsf.2007.12.096
  10. S. W. Park, E. -C. Cho, D. Y. Song, G. Conibeer and M. A. Green, Sol. Energ. Mater. Sol. Cell., 93, 684 (2009). https://doi.org/10.1016/j.solmat.2008.09.032
  11. E. -C. Cho, S. W. Park, X. J. Hao, D. Y. Song, G. Conibeer, S. C. Park and M. A. Green, Nanotechnology, 19, 245201 (2008). https://doi.org/10.1088/0957-4484/19/24/245201
  12. T. Fangsuwannarak, G. Conibeer, G. Scardera, E. -C. Cho, E. Pink, Y. Huang and M. A. Green, in Proceedings of SPIE, 6415, 641508 (2006). https://doi.org/10.1117/12.695701
  13. T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y. W. Ok, T. Y. Seong and C. J. Choi, Appl. Phys. Lett., 85(22), 5355 (2004). https://doi.org/10.1063/1.1814429
  14. D. Y. Song, E.-C. Cho, G. Conibeer, Y. Huang and M. A. Green, Appl. Phys. Lett., 91(12), 123510 (2007). https://doi.org/10.1063/1.2787883
  15. D. Y. Song, E. C. Cho, G. Conibeer, Y. Huang, C. Flynn and M. A. Green, J. Appl. Phys., 103(8), 083544 (2008). https://doi.org/10.1063/1.2909913
  16. G. Scardera, T. Puzzer, E. Pink, G. Conibeer and M. A. Green, Proc. of SPIE, 6415, 641502 (2006). https://doi.org/10.1117/12.695760
  17. G. Scardera, T. Puzzer, G. Conibeer and M. A. Green, J. Appl. Phys., 104(10), 104310 (2008). https://doi.org/10.1063/1.3021158
  18. D. V. Tsu, G. Lucovsky and M. J. Mantini, Phys. Rev. B Condens. Matter., 33(10), 7069 (1986). https://doi.org/10.1103/PhysRevB.33.7069
  19. G. Lucobsky, J. Yang, S. S. Chao, J. E. Tyler and W. Czubatyj, Phys. Rev. B Condens. Matter., 28(6), 3234 (1983). https://doi.org/10.1103/PhysRevB.28.3234
  20. J. Kanicki, and W. L. Warren, J. Non-Cryst. Solids, 164-166, 1055 (1993). https://doi.org/10.1016/0022-3093(93)91180-B
  21. W. L. Warren and P. M. Lenahan, Phys. Rev. B Condens. Matter., 42(3), 1773 (1990). https://doi.org/10.1103/PhysRevB.42.1773
  22. W. L. Warren, C. H. Seager, J. Robertson, J. Kanicki and E. H. Poindexter, J. Electrochem. Soc., 143(11), 3685 (1996). https://doi.org/10.1149/1.1837272
  23. R. Karcher, L. Ley and R. L. Johnson, Phys. Rev. B, 30(4), 1896 (1984). https://doi.org/10.1103/PhysRevB.30.1896
  24. X. J. Hao, E. C. Cho, G. Scardera, E. Bellet-Amalric, D. Bellet, Y. S. Shen, S. Huang, Y. D. Huang, G. Conibeer and M. A. Green, Thin Solid Films, 517, 5646 (2009). https://doi.org/10.1016/j.tsf.2009.02.076
  25. G. Conibeer, M. Green, R. Corkish, Y. Cho, E. -C. Cho, C. -W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav and K. -L. Lin, Thin Solid Films, 511-512, 654 (2006). https://doi.org/10.1016/j.tsf.2005.12.119