DOI QR코드

DOI QR Code

Cobalt Oxide-Tin Oxide Composite: Polymer-Assisted Deposition and Gas Sensing Properties

PAD법으로 제작된 산화코발트-산화주석 복합체의 가스 감응 특성

  • An, Sea-Yong (Department of Materials Science and Engineering, Chungnam National University) ;
  • Li, Wei (Department of Materials Science and Engineering, Chungnam National University) ;
  • Jang, Dong-Mi (Department of Materials Science and Engineering, Chungnam National University) ;
  • Jung, Hyuck (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Do-Jin (Department of Materials Science and Engineering, Chungnam National University)
  • 안세용 (충남대학교 공과대학 재료공학과) ;
  • 이위 (충남대학교 공과대학 재료공학과) ;
  • 장동미 (충남대학교 공과대학 재료공학과) ;
  • 정혁 (충남대학교 공과대학 재료공학과) ;
  • 김도진 (충남대학교 공과대학 재료공학과)
  • Received : 2010.10.21
  • Accepted : 2010.11.02
  • Published : 2010.11.27

Abstract

A cobalt oxide - tin oxide nanocomposite based gas sensor on an $SiO_2$ substrate was fabricated. Granular thin film of tin oxide was formed by a rheotaxial growth and thermal oxidation method using dc magnetron sputtering of Sn. Nano particles of cobalt oxide were spin-coated on the tin oxide. The cobalt oxide nanoparticles were synthesized by polymer-assisted deposition method, which is a simple cost-effective versatile synthesis method for various metal oxides. The thickness of the film can be controlled over a wide range of thicknesses. The composite structures thus formed were characterized in terms of morphology and gas sensing properties for reduction gas of $H_2$. The composites showed a highest response of 240% at $250^{\circ}C$ upon exposure to 4% $H_2$. This response is higher than those observed in pure $SnO_2$ (90%) and $Co_3O_4$ (70%) thin films. The improved response with the composite structure may be related to the additional formation of electrically active defects at the interfaces. The composite sensor shows a very fast response and good reproducibility.

Acknowledgement

Supported by : 한국과학재단

References

  1. J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan and L. Vayssieres, Nanotechnology, 17, 4995 (2006). https://doi.org/10.1088/0957-4484/17/19/037
  2. A. S. Zuruki, A. Kolmalov, N. C. Macdonald and M. Moskovits, Appl. Phys. Lett., 88, 102904 (2006). https://doi.org/10.1063/1.2185247
  3. H. Huang, O. K. Tan, Y. C. Lee, T. D. Tran, M. S. Tse and X. Yao, Appl. Phys. Lett., 87, 163123 (2005). https://doi.org/10.1063/1.2106006
  4. Y. S. Kim, S. -C. Ha, K. Kim, H. Yang, S. -Y. Choi, Y. T. Kim, J. T. Park, C. H. Lee, J. Choi, J. Paek and K. Lee, Appl. Phys. Lett., 86, 213105 (2005). https://doi.org/10.1063/1.1929872
  5. J. Y. Kim, B. G. Kim, S. H. Choi, J. G. Park and J. H. Park, Kor. J. Mater. Res., 20(4), 223 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.4.223
  6. N. L. Hung, H. J. Kim and D. Kim, Kor. J. Mater. Res., 20(5), 235 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.5.235
  7. H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton and J. Lin, Appl. Phys. Lett., 86, 243503 (2005). https://doi.org/10.1063/1.1949707
  8. L. C. Tien, H. T. Wang, B. S. Kang, F. Ren, P. W. Sadik, D. P. Norton, S. J. Pearton and J. Lin, Electrochem. Solid-State Lett., 8, G230 (2005). https://doi.org/10.1149/1.1979450
  9. N. D. Hoa, N. V. Quy, Y. S. Cho and D. Kim, Phys. Status Solidi A, 204, 1820 (2007). https://doi.org/10.1002/pssa.200675318
  10. K. D. Mitzner, J. Sternhagen and D. W. Galipeau, Sensor. Actuator. B Chem., 93, 92 (2003). https://doi.org/10.1016/S0925-4005(03)00244-2
  11. P. Mitra, A. P. Chatterjee and H. S.Maiti, Mater. Lett., 35, 33 (1998). https://doi.org/10.1016/S0167-577X(97)00215-2
  12. Q. X. Jia, T. M. McCleskey, A. K. Burrell, Y. Lin, G. E. Collis, H. Wang, A. D. Q. Li and S. R. Foltyn, Nat. Mater., 3, 529 (2004). https://doi.org/10.1038/nmat1163
  13. M. Radecka, J. Przewoznik and K. Zakrzewska, Thin Solid Films, 391, 247 (2001). https://doi.org/10.1016/S0040-6090(01)00990-7
  14. G. Sberveglieri, G. Faglia, S. Groppeili, P. Nelli and A. Camanzi, Semicond. Sci. Tech., 5, 1231 (1990). https://doi.org/10.1088/0268-1242/5/12/015
  15. W. Li, H. Jung, N. D. Hoa, D. Kim, S. -K. Hong and H. Kim, Sensor. Actuator. B Chem., 150, 160 (2010). https://doi.org/10.1016/j.snb.2010.07.023
  16. N. D. Hoa, N. V. Quy and D. Kim, Sensor. Actuator. B Chem., 142, 253 (2009) https://doi.org/10.1016/j.snb.2009.07.053
  17. A. Janotti and C. G. Van de Walle, Appl. Phys. Lett., 87, 122102 (2005). https://doi.org/10.1063/1.2053360
  18. H. Nanto, T. T. Minami and S. Takata, J. Appl. Phys., 60, 482 (1986). https://doi.org/10.1063/1.337435
  19. G. Sakai, N. Matsunaga, K. Shimanoe and N. Yamazoe, Sensor. Actuator. B Chem., 80, 125 (2001). https://doi.org/10.1016/S0925-4005(01)00890-5