Identification of SUMOylated proteins in neuroblastoma cells after treatment with hydrogen peroxide or ascorbate

  • Grant, Melissa M. (School of Dentistry, University of Birmingham)
  • Received : 2010.04.15
  • Accepted : 2010.09.01
  • Published : 2010.11.30


The small ubiquitin-like modifier (SUMO) proteins have been implicated in the pathology of a number of diseases, including neurodegenerative diseases. The conjugation machinery for SUMOylation consists of a number of proteins which are redox sensitive. Here, under oxidative stress ($100{\mu}M$ hydrogen peroxide), antioxidant ($100{\mu}M$ ascorbate) or control conditions 169 proteins were identified by electospray ionisation fourier transform ion cyclotron resonance mass spectrometry. The majority of these proteins (70%) were found to contain SUMOylation consensus sequences. From the remaining proteins a small number (12%) were found to contain possible SUMO interacting motifs. The proteins identified included DNA and RNA binding proteins, structural proteins and proteasomal proteins. Several of the proteins identified under oxidative stress conditions had previously been identified as SUMOylated proteins, thus validating the method presented.


  1. Bayer, P., Arndt, A., Metzger, S., Mahajan, R., Melchior, F., Jaenicke, R. and Becker, J. (1998) Structure determination of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol. 280, 275-286.
  2. Li, M., Guo, D., Isales, C. M., Eizirik, D. L., Atkinson, M., She, J. X. and Wang, C. Y. (2005) SUMO wrestling with type 1 diabetes. J. Mol. Med. 83, 504-513.
  3. Johnson, E. S. (2004) Protein modification by SUMO. Annu. Rev. Biochem. 73, 355-382.
  4. Sekiyama, N., Ikegami, T., Yamane, T., Ikeguchi, M., Uchimura, Y., Baba, D., Ariyoshi, M., Tochio, H., Saitoh, H. and Shirakawa, M. (2008) Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3. J. Biol. Chem. 283, 35966-35975.
  5. Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. and Jentsch, S. (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428-433.
  6. Dorval, V. and Fraser, P. E. (2007) SUMO on the road to neurodegeneration. Biochim. Biophys. Acta. 1773, 694-706.
  7. Terashima, T., Kawai, H., Fujitani, M., Maeda, K. and Yasuda, H. (2002) SUMO-1 colocalized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death. Neuroreport. 13, 2359- 2364.
  8. Saitoh, H. and Hinchey, J. (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252-6258.
  9. Bossis, G. and Melchior, F. (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell 21, 349-357.
  10. Paulsen, C. E. and Carroll, K. S. (2010) Orchestrating redox signaling networks through regulatory cysteine switches. ACS. Chem. Biol. 5, 47-62.
  11. Grant, M. M., Barber, V. S. and Griffiths, H. R. (2005) The presence of ascorbate induces expression of brain derived neurotrophic factor in SH-SY5Y neuroblastoma cells after peroxide insult, which is associated with increased survival. Proteomics. 5, 534-540.
  12. Rosas-Acosta, G., Russell, W. K., Deyrieux, A., Russell, D. H. and Wilson, V. G. (2005) A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell Proteomics. 4, 56-72.
  13. Vertegaal, A. C., Andersen, J. S., Ogg, S. C., Hay, R. T., Mann, M. and Lamond, A. I. (2006) Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol. Cell Proteomics. 5, 2298-2310.
  14. Hannich, J. T., Lewis, A., Kroetz, M. B., Li, S. J., Heide, H., Emili, A. and Hochstrasser, M. (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem. 280, 4102-4110.
  15. Wohlschlegel, J. A., Johnson, E. S., Reed, S. I. and Yates, J. R. 3rd. (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem. 279, 45662-45668.
  16. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M. and Séraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030-1032.
  17. He, Y. and Smith, R. (2009) Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell Mol. Life Sci. 66, 1239-1256.
  18. Hay, R. T. (2005) SUMO: a history of modification. Mol. Cell 18, 1-12.
  19. Perry, J. J., Tainer, J. A. and Boddy, M. N. (2008) A SIMultaneous role for SUMO and ubiquitin. Trends Biochem. Sci. 33, 201-208.
  20. Hecker, C., Rabiller, M., Haglund, K., Bayer, P. and Dikic, I. (2006) Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281, 16117-16127.
  21. Song, J., Zhang, Z., Hu, W. and Chen, Y. (2005) Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J. Biol. Chem. 280, 40122-40129.
  22. Jakobs, A., Koehnke, J., Himstedt, F., Funk, M., Korn, B., Gaestel, M. and Niedenthal, R. (2007) Ubc9 fusion- directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nat. Methods. 4, 245-250.
  23. Gutierrez, G. J. and Ronai, Z. (2006) Ubiquitin and SUMO systems in the regulation of mitotic checkpoints. Trends Biochem. Sci. 31, 324-332.
  24. Jakobs, A., Himstedt, F., Funk, M., Korn, B., Gaestel, M. and Niedenthal, R. (2007) Ubc9 fusion-directed SUMOylation identifies constitutive and inducible SUMOylation. Nucleic. Acids. Res. 35, e109.
  25. Pollice, A., Vivo, M. and La Mantia, G. (2008) The promiscuity of ARF interactions with the proteasome. FEBS Lett. 582, 3257-3262.
  26. Gharahdaghi, F., Weinberg, C. R., Meagher, D. A., Imai, B. S. and Mische, S. M. (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20, 601-605.<601::AID-ELPS601>3.0.CO;2-6
  27. Creese, A. and Cooper, H. J. (2007) Liquid chromatography electron capture dissociation tandem mass spectrometry (LC-ECD-MS/MS) versus liquid chromatography collision-induced dissociation tandem mass spectrometry (LC-CID-MS/MS) for the identification of proteins. J. Am. Soc. Mass. Spectrom. 18, 891-897.
  28. Chow, S. and Ruskey, F. (2004) Drawing area-proportional Venn and Euler diagrams. Proc. of Graph. Drawing 2912, 466-477.
  29. Ren, J., Gao, X., Jin, C., Zhu, M., Wang, X., Shaw, A., Wen, L., Yao, X. and Xue, Y. (2009) Systematic study of protein sumoylation: development of a site-specific predictor of SUMOsp 2.0. Proteomics. 9, 3409-3412.

Cited by

  1. Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins vol.5, pp.3, 2015,
  2. Transient ischemia induces massive nuclear accumulation of SUMO2/3-conjugated proteins in spinal cord neurons vol.51, pp.2, 2013,
  3. Characterization of a novel posttranslational modification in polypyrimidine tract-binding proteins by SUMO1 vol.47, pp.4, 2014,
  4. The strategies for identification and quantification of SUMOylation vol.53, pp.52, 2017,
  5. Repair of Oxidative DNA Damage and Cancer: Recent Progress in DNA Base Excision Repair vol.20, pp.4, 2014,
  6. Aberrant sumoylation signaling evoked by reactive oxygen species impairs protective function of Prdx6 by destabilization and repression of its transcription vol.281, pp.15, 2014,
  7. Uncovering Ubiquitin and Ubiquitin-like Signaling Networks vol.111, pp.12, 2011,
  8. PP2A as a master regulator of the cell cycle vol.51, pp.3, 2016,
  9. Thiol-protease oxidation in age-related neuropathology vol.51, pp.2, 2011,