DOI QR코드

DOI QR Code

THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS

  • Jang, Lee-Chae
  • Received : 2009.04.03
  • Published : 2010.11.30

Abstract

q-Volkenborn integrals ([8]) and fermionic invariant q-integrals ([12]) are introduced by T. Kim. By using these integrals, Euler q-zeta functions are introduced by T. Kim ([18]). Then, by using the Euler q-zeta functions, S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin ([25]) studied q-Genocchi zeta functions. And also Y. H. Kim, W. Kim, and C. S. Ryoo ([7]) investigated twisted q-zeta functions and their applications. In this paper, we consider the q-analogue of twisted Lerch type Euler zeta functions defined by $${\varsigma}E,q,\varepsilon(s)=[2]q \sum\limits_{n=0}^\infty\frac{(-1)^n\epsilon^nq^{sn}}{[n]_q}$$ where 0 < q < 1, $\mathfrak{R}$(s) > 1, $\varepsilon{\in}T_p$, which are compared with Euler q-zeta functions in the reference ([18]). Furthermore, we give the q-extensions of the above twisted Lerch type Euler zeta functions at negative integers which interpolate twisted q-Euler polynomials.

Keywords

p-adic q-integral;q-Euler number and polynomials;q-Euler zeta functions;Lerch type q-Euler zeta functions

References

  1. L. C. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000. https://doi.org/10.1215/S0012-7094-48-01588-9
  2. M. Cenkci and M. Can, Some results on q-analogue of the Lerch zeta function, Adv. Stud. Contemp. Math. (Kyungshang) 12 (2006), no. 2, 213-223.
  3. M. Cenkci, Y. Simsek, and V. Kurt, Further remarks on multiple p-adic q-L-function of two variables, Adv. Stud. Contemp. Math. (Kyungshang) 14 (2007), no. 1, 49-68.
  4. L.-C. Jang, On a q-analogue of the p-adic generalized twisted L-functions and p-adic q-integrals, J. Korean Math. Soc. 44 (2007), no. 1, 1-10. https://doi.org/10.4134/JKMS.2007.44.1.001
  5. L.-C. Jang, Multiple twisted q-Euler numbers and polynomials associated with p-adic q-integrals, Adv. Difference Equ. 2008 (2008), Art. ID 738603, 11 pp.
  6. L. C. Jang, S. D. Kim, D. W. Park, and Y. S. Ro, A note on Euler number and polynomials, J. Inequal. Appl. 2006 (2006), Art. ID 34602, 5 pp.
  7. Y.-H. Kim, W. Kim, and C. S. Ryoo, On the twisted q-Euler zeta function associated with twisted q-Euler numbers, Proc. Jangjeon Math. Soc. 12 (2009), no. 1, 93-100.
  8. T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999), no. 2, 320-329. https://doi.org/10.1006/jnth.1999.2373
  9. T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling umbers by the fermionic p-adic integral on $Z_p$, Russ. J. Math. Phys. 16 (2009), no. 4, 484-491. https://doi.org/10.1134/S1061920809040037
  10. T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288-299.
  11. T. Kim, On Euler-Barnes multiple zeta functions, Russ. J. Math. Phys. 10 (2003), no. 3, 261-267.
  12. T. Kim, Analytic continuation of multiple q-zeta functions and their values at negative integers, Russ. J. Math. Phys. 11 (2004), no. 1, 71-76.
  13. T. Kim, Power series and asymptotic series associated with the q-analog of the two-variable p-adic L-function, Russ. J. Math. Phys. 12 (2005), no. 2, 186-196.
  14. T. Kim, Multiple p-adic L-function, Russ. J. Math. Phys. 13 (2006), no. 2, 151-157. https://doi.org/10.1134/S1061920806020038
  15. T. Kim, q-generalized Euler numbers and polynomials, Russ. J. Math. Phys. 13 (2006), no. 3, 293-298. https://doi.org/10.1134/S1061920806030058
  16. T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on $Z_p$ at q = -1, J. Math. Anal. Appl. 331 (2007), no. 2, 779-792. https://doi.org/10.1016/j.jmaa.2006.09.027
  17. T. Kim, p-adic interpolating function for q-Euler numbers and its derivatives, J. Math. Anal. Appl. 339 (2008), no. 1, 598-608. https://doi.org/10.1016/j.jmaa.2007.07.027
  18. T. Kim, Note on the Euler q-zeta functions, J. Number Theory 129 (2009), no. 7, 1798-1804. https://doi.org/10.1016/j.jnt.2008.10.007
  19. H. Ozden, I. N. Cangul, and Y. Simsek, Multivariate interpolation functions of higher-order q-Euler numbers and their applications, Abstr. Appl. Anal. 2008 (2008), Art. ID 390857, 16 pp.
  20. H. Ozden, I. N. Cangul, and Y. Simsek, Remarks on sum of products of (h, q)-twisted Euler polynomials and numbers, J. Inequal. Appl. 2008 (2008), Art. ID 816129, 8 pp.
  21. H. Ozden and Y. Simsek, A new extension of q-Euler numbers and polynomials related to their interpolation functions, Appl. Math. Lett. 21 (2008), no. 9, 934-939. https://doi.org/10.1016/j.aml.2007.10.005
  22. H. Ozden, Y. Simsek, and I. N. Cangul, Euler polynomials associated with p-adic q-Euler measure, Gen. Math. 15 (2007), no. 2, 24-37.
  23. H. Ozden, Y. Simsek, S. H. Rim, and I. N. Cangul, A note on p-adic q-Euler measure, Adv. Stud. Contemp. Math. (Kyungshang) 14 (2007), no. 2, 233-239.
  24. S.-H. Rim and T. Kim, A note on p-adic Euler measure on $Z_p$, Russ. J. Math. Phys. 13 (2006), no. 3, 358-361. https://doi.org/10.1134/S1061920806030113
  25. S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin, On the q-Genocchi numbers and polynomials associated with q-zeta function, Proceedings of Jangjeon Math. Soc. 12 (2009), 261-268.
  26. Y. Simsek, p-adic twisted q-L-functions related to generalized twisted Bernoulli numbers, Russ. J. Math. Phys. 13 (2006), no. 3, 340-348. https://doi.org/10.1134/S1061920806030095
  27. Y. Simsek, The behavior of the twisted p-adic (h, q)-L-functions at s = 0, J. Korean Math. Soc. 44 (2007), no. 4, 915-929. https://doi.org/10.4134/JKMS.2007.44.4.915
  28. Y. Simsek, On twisted q-Hurwitz zeta function and q-two-variable L-function, Appl. Math. Comput. 187 (2007), no. 1, 466-473. https://doi.org/10.1016/j.amc.2006.08.146
  29. Y. Simsek, Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions, Adv. Stud. Contemp. Math. (Kyungshang) 16 (2008), no. 2, 251-278.
  30. Y. Simsek, V. Kurt, and D. Kim, New approach to the complete sum of products of the twisted (h, q)-Bernoulli numbers and polynomials, J. Nonlinear Math. Phys. 14 (2007), no. 1, 44-56. https://doi.org/10.2991/jnmp.2007.14.1.5
  31. Y. Simsek, O. Yurekli, and V. Kurt, On interpolation functions of the twisted generalized Frobenius-Euler numbers, Adv. Stud. Contemp. Math. (Kyungshang) 15 (2007), no. 2, 187-194.
  32. H. M. Srivastava, T. Kim, and Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russ. J. Math. Phys. 12 (2005), no. 2, 241-268.

Cited by

  1. A New Family of q-analogue of Genocchi Numbers and Polynomials of Higher Order vol.54, pp.1, 2014, https://doi.org/10.5666/KMJ.2014.54.1.131
  2. A NOTE ON THE TWISTED LERCH TYPE EULER ZETA FUNCTIONS vol.50, pp.2, 2013, https://doi.org/10.4134/BKMS.2013.50.2.659
  3. On the Dirichlet’s type of Eulerian polynomials vol.8, pp.2, 2014, https://doi.org/10.1007/s40096-014-0131-8

Acknowledgement

Supported by : Konkuk University