DOI QR코드

DOI QR Code

NUMERICAL SOLUTIONS FOR SPACE FRACTIONAL DISPERSION EQUATIONS WITH NONLINEAR SOURCE TERMS

  • Choi, Hong-Won (DEPARTMENT OF MATHEMATICS SEOUL SCIENCE HIGH SCHOOL) ;
  • Chung, Sang-Kwon (DEPARTMENT OF MATHEMATICS EDUCATION SEOUL NATIONAL UNIVERSITY) ;
  • Lee, Yoon-Ju (DEPARTMENT OF MATHEMATICS SEOUL SCIENCE HIGH SCHOOL)
  • Received : 2009.04.14
  • Published : 2010.11.30

Abstract

Numerical solutions for the fractional differential dispersion equations with nonlinear forcing terms are considered. The backward Euler finite difference scheme is applied in order to obtain numerical solutions for the equation. Existence and stability of the approximate solutions are carried out by using the right shifted Grunwald formula for the fractional derivative term in the spatial direction. Error estimate of order $O({\Delta}x+{\Delta}t)$ is obtained in the discrete $L_2$ norm. The method is applied to a linear fractional dispersion equations in order to see the theoretical order of convergence. Numerical results for a nonlinear problem show that the numerical solution approach the solution of classical diffusion equation as fractional order approaches 2.

Keywords

fractional differential equation;Riemann-Liouville fractional derivative;Caputo fractional derivative;finite difference scheme;stability;convergence;error estimate

References

  1. B. Baeumer, M. Kovacs, and M. M. Meerschaert, Fractional reproduction-dispersal equations and heavy tail dispersal kernels, Bull. Math. Biol. 69 (2007), no. 7, 2281-2297. https://doi.org/10.1007/s11538-007-9220-2
  2. V. J. Ervin, N. Heuer, and J. P. Roop, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal. 45 (2007), no. 2, 572-591. https://doi.org/10.1137/050642757
  3. B. Baeumer, M. Kovacs, and M. M. Meerschaert, Numerical solutions for fractional reaction-diffusion equations, Comput. Math. Appl. 55 (2008), no. 10, 2212-2226. https://doi.org/10.1016/j.camwa.2007.11.012
  4. V. E. Lynch, B. A. Carreras, D. del-Castillo-Negrete, K. M. Ferreira-Mejias, and H. R. Hicks, Numerical methods for the solution of partial differential equations of fractional order, J. Comput. Phys. 192 (2003), no. 2, 406-421. https://doi.org/10.1016/j.jcp.2003.07.008
  5. M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math. 172 (2004), no. 1, 65-77. https://doi.org/10.1016/j.cam.2004.01.033
  6. M. M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math. 56 (2006), no. 1, 80-90. https://doi.org/10.1016/j.apnum.2005.02.008
  7. M. M. Meerschaert, H.-P. Scheffler, and C. Tadjeran, Finite difference methods for two-dimensional fractional dispersion equation, J. Comput. Phys. 211 (2006), no. 1, 249-261. https://doi.org/10.1016/j.jcp.2005.05.017
  8. K. B. Oldham and J. Spanier, The Fractional Calculus, Dover Publications, New York, 2002.
  9. J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York-London, 1970.
  10. J. P. Roop, Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in $R^2$, J. Comput. Appl. Math. 193 (2006), no. 1, 243-268. https://doi.org/10.1016/j.cam.2005.06.005
  11. C. Tadjeran, M. M. Meerschaert, and H.-P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys. 213 (2006), no. 1, 205-213. https://doi.org/10.1016/j.jcp.2005.08.008
  12. H. Ye, J. Gao, and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl. 328 (2007), no. 2, 1075-1081. https://doi.org/10.1016/j.jmaa.2006.05.061
  13. R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962.

Cited by

  1. Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative vol.131, pp.9, 2016, https://doi.org/10.1140/epjp/i2016-16335-8
  2. Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction–diffusion systems 2017, https://doi.org/10.1007/s40314-017-0445-x
  3. Finite Element Solutions for the Space Fractional Diffusion Equation with a Nonlinear Source Term vol.2012, 2012, https://doi.org/10.1155/2012/596184
  4. A Spectral Legendre–Gauss–Lobatto Collocation Method for a Space-Fractional Advection Diffusion Equations with Variable Coefficients vol.72, pp.2, 2013, https://doi.org/10.1016/S0034-4877(14)60015-X
  5. Water wave propagation in unbounded domains. Part II: Numerical methods for fractional PDEs vol.275, 2014, https://doi.org/10.1016/j.jcp.2014.07.007
  6. A PREDICTOR-CORRECTOR METHOD FOR FRACTIONAL EVOLUTION EQUATIONS vol.53, pp.6, 2016, https://doi.org/10.4134/BKMS.b150901
  7. A New Numerical Algorithm for Solving a Class of Fractional Advection-Dispersion Equation with Variable Coefficients Using Jacobi Polynomials vol.2013, 2013, https://doi.org/10.1155/2013/954983
  8. Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator vol.133, pp.3, 2018, https://doi.org/10.1140/epjp/i2018-11951-x