• Received : 2009.04.30
  • Published : 2010.11.30


If the Wiener-Hopf $C^*$-algebra W(G,M) for a discrete group G with a semigroup M has the uniqueness property, then the structure of it is to some extent independent of the choice of isometries on a Hilbert space. In this paper we show that if the Wiener-Hopf $C^*$-algebra W(G,M) of a partially ordered group G with the positive cone M has the uniqueness property, then (G,M) is weakly unperforated. We also prove that the Wiener-Hopf $C^*$-algebra W($\mathbb{Z}$, M) of subsemigroup generating the integer group $\mathbb{Z}$ is isomorphic to the Toeplitz algebra, but W($\mathbb{Z}$, M) does not have the uniqueness property except the case M = $\mathbb{N}$.


left regular isometric representation;Wiener-Hopf $C^*$-algebra unperforated semigroup;Toeplitz algebra


  1. L. A. Coburn, The $C^{\ast}-algebra$ generated by an isometry. II, Trans. Amer. Math. Soc. 137 (1969), 211-217.
  2. J. Cuntz, Simple $C^{\ast}-algebras$ generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173-185.
  3. K. R. Davidson, E. Katsoulis, and D. R. Pitts, The structure of free semigroup algebras, J. Reine Angew. Math. 533 (2001), 99-125.
  4. R. G. Douglas, On the $C^{\ast}-algebra$ of a one-parameter semigroup of isometries, Acta Math. 128 (1972), no. 3-4, 143-151.
  5. G. A. Elliott, Dimension groups with torsion, Internat. J. Math. 1 (1990), no. 4, 361-380.
  6. S. Y. Jang, Reduced crossed products by semigroups of automorphisms, J. Korean Math. Soc. 36 (1999), no. 1, 97-107.
  7. S. Y. Jang, Generalized Toeplitz algebra of a certain non-amenable semigroup, Bull. Korean Math. Soc. 43 (2006), no. 2, 333-341.
  8. M. Laca and I. Raeburn, Semigroup crossed products and the Toeplitz algebras of non-abelian groups, J. Funct. Anal. 139 (1996), no. 2, 415-440.
  9. P. Muhly and J. Renault, $C^{\ast}-algebras$ of multivariable Wiener-Hopf operators, Trans. Amer. Math. Soc. 274 (1982), no. 1, 1-44.
  10. G. J. Murphy, Crossed products of $C^{\ast}-algebras$ by semigroups of automorphisms, Proc. London Math. Soc. (3) 68 (1994), no. 2, 423-448.
  11. A. Nica, Some remarks on the groupoid approach to Wiener-Hopf operators, J. Operator Theory 18 (1987), no. 1, 163-198.
  12. A. Nica, $C^{\ast}-algebras$ generated by isometries and Wiener-Hopf operators, J. Operator Theory 27 (1992), no. 1, 17-52.
  13. G. K. Pedersen, $C^{\ast}-Algebras$ and Their Automorphism Groups, Academic Press, Inc., London-New York, 1979.
  14. M. Rordam, The stable and the real rank of Z-absorbing $C^{\ast}-algebras$, Internat. J. Math. 15 (2004), no. 10, 1065-1084.
  15. M. Rordam, Structure and classification of $C^{\ast}-algebras$, International Congress of Mathematicians. Vol. II, 1581-1598, Eur. Math. Soc., Zurich, 2006.