• Received : 2009.05.07
  • Published : 2010.11.30


We construct a family of 3-balls using cones which represent closed orientable 3-manifolds and study twisted face-pairing construction due to Cannon, Floyd and Parry to understand the structure of such manifolds. Moreover, we prove that those manifolds are hyperbolic.


  1. R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
  2. J. W. Cannon, W. J. Floyd, and W. R. Parry, Twisted face-pairing 3-manifolds, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2369-2397.
  3. J. W. Cannon, W. J. Floyd, and W. R. Parry, Ample twisted face-pairing 3-manifolds, preprint.
  4. J. W. Cannon, W. J. Floyd, and W. R. Parry, Heegaard diagrams and surgery descriptions for twisted face-pairing 3-manifolds, Algebr. Geom. Topol. 3 (2003), 235-285.
  5. J. W. Cannon, W. J. Floyd, and W. R. Parry, A survey of twisted face-pairing 3-manifolds, preprint.
  6. R. E. Gompf and A. I. Stipsicz, 4-manifolds and Kirby Calculus, Graduate Studies in Mathematics, 20. American Mathematical Society, Providence, RI, 1999.
  7. H. Helling, A. C. Kim, and J. Mennicke, On Fibonacci groups, preprint.
  8. M. Mulazzani, On periodic Takahashi manifolds, Tsukuba J. Math. 25 (2001), no. 2, 229-237.
  9. D. Rolfsen, Knots and Links, Mathematics Lecture Series, No. 7. Publish or Perish, Inc., Berkeley, Calif., 1976.
  10. B. Ruini and F. Spaggiari, On the structure of Takahashi manifolds, Tsukuba J. Math. 22 (1998), no. 3, 723-739.
  11. M. Takahashi, On the presentations of the fundamental groups of 3-manifolds, Tsukuba J. Math. 13 (1989), no. 1, 175-189.
  12. W. P. Thurston, The geometry and topology of 3-manifold, Lect. Notes, Princeton University, N. J., 1980.