Creep Behavior of a PZT Wafer Under Tensile Stress: Experiments and Modeling

인장하중을 받을 때 PZT 웨이퍼의 크립 거동: 실험과 모델링

  • Kim, Sang-Joo (Department of Mechanical and Information Engineering, University of Seoul) ;
  • Lee, Chang-Hoan (Korea Institute of Science and Technology Information)
  • 김상주 (서울시립대학교 기계정보공학과) ;
  • 이창환 (한국과학기술정보연구원)
  • Published : 2010.01.01


A commercially available soft PZT wafer that is poled in thickness direction is subjected to longitudinal tensile stress loading in both short and open-circuit conditions. Variations of electric displacement in thickness direction and in-plane strains are measured over time during the loading. Different material responses in the two electrical boundary conditions are explained by the effects of piezoelectrically produced internal electric field on linear material moduli and domain switching mechanisms. Finally, a free energy model of normal distribution is introduced to explain the observed creep behavior, and its predictions are compared with experimental observations.


  1. Smith R. C., Seelecke S. and Dapino M., 2006, “A Unified Framework for Modeling Hysteresis in Ferroic Materials,”J. Mech. Phys. Solids, Vol. 54, pp. 785-811
  2. Kim S. J. and Seelecke S., 2007,“A Rate-Dependent Three-Dimensional Free Energy Model for Ferroelectric Single Crystals,”Int. J. Solids Struct., Vol. 44, pp. 1196-1209
  3. Srivastava N. and Weng G. J., 2006, “A Theory of Double Hysteresis for Ferroelectric Crystals,”J. Appl. Phys., Vol. 99, 054103
  4. Belov, A. Y. and Kreher, W. S., 2005,“Viscoplastic Behavior of Perovskite Type Ferroelectrics,”Mat. Sci. Eng. B, Vol. 118, pp. 7-11
  5. Kamlah, M., Liskowsky, A. C., McMeeking, R. M. and Balke, H., 2005, “Finite Element Simulation of a Polycrystalline Ferroelectric Based on a Multidomain Single Crystal Switching Model”, Int. J. Solids Struct., Vol. 42, pp. 2949-2964
  6. Liu, Q. D. and Huber, J. E., 2006, “Creep in Ferroelectrics due to Unipolar Electrical Loadin,”J. Euro. Ceram. Soc., Vol. 26, pp. 2799-2806
  7. Kim, S. J. and Lee, C. H., 2009, ”Creep Behavior of a Poled PZT Wafer Under Longitudinal Tensile Stress and Through Thickness Electric Field,”Int. J. Solids Struct., Vol. 46, pp. 716-725
  8. Kim, S. J., 2009, “Predictions of Tensile Creep Behavior of a PZT Wafer by Normally Distributed Free Energy Model,” Mech. Mat. Vol. 41, pp. 1253-1263
  9. Kim S. J., 2007, “A Prediction of Rate-Dependent Behavior in Ferroelectric Polycrystals,” Mat. Sci. Eng. B., Vol. 141, pp. 34-42

Cited by

  1. Effects of inclusion on the creep rate of piezoelectric films pp.1537-6532, 2017,