DOI QR코드

DOI QR Code

Antioxidants from macroalgae: potential applications in human health and nutrition

  • Cornish, M. Lynn (James S. Craigie Research Centre, Acadian Seaplants Limited) ;
  • Garbary, David J. (Department of Biology, St. Francis Xavier University)
  • Received : 2010.08.28
  • Accepted : 2010.11.22
  • Published : 2010.12.01

Abstract

The underlying physiology of algal antioxidant compounds is reviewed in the context of seaweed biology and utilization. The application of seaweed antioxidants in foods, food supplements, nutraceuticals and medicine is considered from the perspective of benefits to human health. We advocate that direct consumption of seaweed products for their antioxidant composition alone provides a useful alternative to non-natural substances, while simultaneously providing worthwhile nutritional benefits. Economic utilization of seaweeds for their antioxidant properties remains in its infancy. This review provides examples ranging from laboratory studies through to clinical trials where antioxidants derived from seaweeds may provide major health benefits that warrant subsequent investigative studies and possible utilization.

References

  1. Aguirre-von-Wobeser, E., Figueroa, F. L. & Cabello-Pasini, A. 2000. Effect of UV radiation on photoinhibition of marine macrophytes in culture systems. J. Appl. Phycol. 12:159-168. https://doi.org/10.1023/A:1008198404529
  2. Ahn, G. -N., Kim, K. -N., Cha, S. -H., Song, C. -B., Lee, J., Heo, M. -S., Yeo, I. -K., Lee, N. -H., Jee, Y. -H., Kim, J. -S., Heu, M. -S. & Jeon, Y. -J. 2007. Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and $H_{2}O_{2}$- mediated DNA damage. Eur. Food Res. Technol. 226:71-79. https://doi.org/10.1007/s00217-006-0510-y
  3. Aisa, Y., Miyakawa, Y., Nakazato, T., Shibata, H., Saito, K., Ikeda, Y. & Kizaki, M. 2005. Fucoidan induces apoptosis of human HS-Sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways. Am. J. Hematol. 78:7-14. https://doi.org/10.1002/ajh.20182
  4. Alscher, R. G., Donahue, J. L. & Cramer, C. L. 1997. Reactive oxygen species and antioxidants: relationships in green cells. Physiol. Plant. 100:224-233. https://doi.org/10.1111/j.1399-3054.1997.tb04778.x
  5. Apostolidis, E. & Lee, C. M. 2010. In vitro potential of Ascophyllum nodosum phenolic antioxidant-mediated alpha-glucosidase and alpha-amylase inhibition. J. Food Sci. 75:H97-H102. https://doi.org/10.1111/j.1750-3841.2010.01544.x
  6. Asgari, M. M., Maruti, S. S., Kushi, L. H. & White, E. 2009. Antioxidant supplementation and risk of incident melanomas: results of a large prospective cohort study. Arch. Dermatol. 145:879-882. https://doi.org/10.1001/archdermatol.2009.176
  7. Athukorala, Y., Kim, K. -N. & Jeon, Y. -J. 2006. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem. Toxicol. 44:1065-1074. https://doi.org/10.1016/j.fct.2006.01.011
  8. Barahona, T., Chandia, N. P., Encinas, M. V., Matsuhiro, B. & Zuniga, E. A. 2011. Antioxidant capacity of sulfated polysaccharides from seaweed: a kinetic approach. Food Hydrocoll. 25:529-535. https://doi.org/10.1016/j.foodhyd.2010.08.004
  9. Beress, A., Wassermann, O., Bruhn, T., Béress, L., Kraiselburd, E. N., Gonzalez, L. V., de Motta, G. E. & Chavez, P. I. 1993. A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. J. Nat. Prod. 56:478-488. https://doi.org/10.1021/np50094a005
  10. Bocanegra, A., Bastida, S., Benedi, J., Rodenas, S. & Sanchez-Muniz, F. J. 2009. Characteristics and nutritional and cardiovascular-health properties of seaweeds. J. Med. Food 12:236-258. https://doi.org/10.1089/jmf.2008.0151
  11. Borek, C. 1993. Molecular mechanisms in cancer induction and prevention. Environ. Health Perspect. 101 Suppl. 3:237-245. https://doi.org/10.1289/ehp.93101s3237
  12. Cadenas, E. & Davies, K. J. A. 2000. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29:222-230. https://doi.org/10.1016/S0891-5849(00)00317-8
  13. Centeno, P. O. R. & Ballantine, D. L. 1999. Effects of culture conditions on production of antibiotically active metabolites by the marine alga Spyridia filamentosa (Ceramiaceae, Rhodophyta): I. Light. J. Appl. Phycol. 11:217-224. https://doi.org/10.1023/A:1008113108834
  14. Cerutti, P. A. 1985. Prooxidant states and tumor promotion. Science 227:375-381. https://doi.org/10.1126/science.2981433
  15. Cha, S. -H., Lee, K. -W. & Jeon, Y. -J. 2006. Screening of extracts from red algae in Jeju for potential marine angiotensin-I converting enzyme (ACE) inhibitory activity. Algae 21:343-348. https://doi.org/10.4490/ALGAE.2006.21.3.343
  16. Chandini, S. K., Ganesan, P. & Bhaskar, N. 2008. In vitro antioxidant activities of three selected brown seaweeds of India. Food Chem. 107:707-713. https://doi.org/10.1016/j.foodchem.2007.08.081
  17. Chattopadhyay, N., Ghosh, T., Sinha, S., Chattopadhyay, K., Karmakar, P. & Ray, B. 2010. Polysaccharides from Turbinaria conoides: structural features and antioxidant capacity. Food Chem. 118:823-829. https://doi.org/10.1016/j.foodchem.2009.05.069
  18. Chew, Y. L., Lim, Y. Y., Omar, M. & Khoo, K. S. 2008. Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT-Food Sci. Technol. 41:1067-1072. https://doi.org/10.1016/j.lwt.2007.06.013
  19. Collen, J., Pinto, E., Pedersen, M. & Colepicolo, P. 2003. Induction of oxidative stress in the red macroalga Gracilaria tenuistipitata by pollutant metals. Arch. Environ. Contam. Toxicol. 45:337-342.
  20. Connan, S., Deslandes, E. & Ar Gall, E. 2007. Influence of day-night and tidal cycles on phenol content and antioxidant capacity in three temperate intertidal brown seaweeds. J. Exp. Mar. Biol. Ecol. 349:359-369. https://doi.org/10.1016/j.jembe.2007.05.028
  21. Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. A., Câmara, R. B. G., Nobre, L. T. D. B., Costa, M. S. S. P., Almeida-Lima, J., Farias, E. H. C., Leite, E. L. & Rocha, H. A. O. 2010. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed. Pharm. 64:21-28. https://doi.org/10.1016/j.biopha.2009.03.005
  22. Dang, H. T., Lee, H. J., Yoo, E. S., Shinde, P. B., Lee, Y. M., Hong, J., Kim, D. K. & Jung, J. H. 2008. Anti-inflammatory constituents of the red alga Gracilaria verrucosa and their synthetic analogues. J. Nat. Prod. 71:232-240. https://doi.org/10.1021/np070452q
  23. Decker, E. A., Warner, K., Richards, M. P. & Shahidi, F. 2005. Measuring antioxidant effectiveness in food. J. Agric. Food Chem. 53:4303-4310. https://doi.org/10.1021/jf058012x
  24. Demmig-Adams, B. & Adams, W. W. 2002. Antioxidants in photosynthesis and human nutrition. Science 298:2149-2153. https://doi.org/10.1126/science.1078002
  25. Devi, K. P., Suganthy, N., Kesika, P. & Pandian, S. K. 2008. Bioprotective properties of seaweeds: in vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complement. Altern. Med. 8:38. https://doi.org/10.1186/1472-6882-8-38
  26. Diaz-Rubio, M. E., Perez-Jimenez, J. & Saura-Calixto, F. 2009. Dietary fiber and antioxidant capacity in Fucus vesiculosus products. Int. J. Food Sci. Nutr. 60 Suppl. 2:23-34.
  27. Dring, M. J. 2005. Stress resistance and disease resistance in seaweeds: the role of reactive oxygen metabolism. Adv. Bot. Res. 43:175-207. https://doi.org/10.1016/S0065-2296(05)43004-9
  28. Duan, X. -J., Zhang, W. -W., Li, X. -M. & Wang, B. -G. 2006. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chem. 95:37-43. https://doi.org/10.1016/j.foodchem.2004.12.015
  29. Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M. & Merillon, J. -M. 2009. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 57:1768-1774. https://doi.org/10.1021/jf803011r
  30. Dummermuth, A. L., Karsten, U., Fisch, K. M., Konig, G. M. & Wiencke, C. 2003. Responses of marine macroalgae to hydrogen-peroxide stress. J. Exp. Mar. Biol. Ecol. 289:103-121. https://doi.org/10.1016/S0022-0981(03)00042-X
  31. Falkowski, P. G. & Raven, J. A. 2007. Aquatic photosynthesis. 2nd ed. Princeton University Press, Princeton, NJ, 484 pp.
  32. Fayaz, M., Namitha, K. K., Murthy, K. N. C., Swamy, M. M., Sarada, R., Khanam, S., Subbarao, P. V. & Ravishankar, G. A. 2005. Chemical composition, iron bioavailability, and antioxidant activity of Kappaphycus alvarezzi (Doty). J. Agric. Food Chem. 53:792-797. https://doi.org/10.1021/jf0493627
  33. Foti, M., Piattelli, M., Amico, V. & Ruberto, G. 1994. Antioxidant activity of phenolic meroditerpenoids from marine algae. J. Photochem. Photobiol. B Biol. 26:159-164. https://doi.org/10.1016/1011-1344(94)07038-5
  34. Frankel, E. N. & Finley, J. W. 2008. How to standardize the multiplicity of methods to evaluate natural antioxidants. J. Agric. Food Chem. 56:4901-4908. https://doi.org/10.1021/jf800336p
  35. Fuchs, J. & Kern, H. 1998. Modulation of UV-light-induced skin inflammation by D-alpha-tocopherol and L-ascorbic acid: a clinical study using solar simulated radiation. Free Radic. Biol. Med. 25:1006-1012. https://doi.org/10.1016/S0891-5849(98)00132-4
  36. Fung, T. T., Hunter, D. J., Spiegelman, D., Colditz, G. A., Speizer, F. E. & Willett, W. C. 2002. Vitamins and carotenoids intake and the risk of basal cell carcinoma of the skin in women (United States). Cancer Causes Control 13:221-230. https://doi.org/10.1023/A:1015036317596
  37. Garbary, D. J. 2007. The margin of the sea: survival at the top of the tides. In Seckbach, J. (Ed.) Algae and Cyanobacteria of Extreme Environments. Springer, Berlin, pp. 173-191.
  38. Garcia-Casal, M. N., Ramírez, J., Leets, I., Pereira, A. C. & Quiroga, M. F. 2009. Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects. Br. J. Nutr. 101:79-85. https://doi.org/10.1017/S0007114508994757
  39. Gerschman, R., Gilbert, D. L., Nye, S. W., Dwyer, P. & Fenn, W. O. 1954. Oxygen poisoning and x-irradiation: a mechanism in common. Science 119:623-626. https://doi.org/10.1126/science.119.3097.623
  40. Groniger, A., Hallier, C. & Hader, D. P. 1999. Influence of UV radiation and visible light on Porphyra umbilicalis: photoinhibition and MAA concentration. J. Appl. Phycol. 11:437-445. https://doi.org/10.1023/A:1008179322198
  41. Gunji, S., Santoso, J., Yoshie-Stark, Y. & Suzuki, T. 2007. Effects of extracts from tropical seaweeds on DPPH radicals and Caco-2 cells treated with hydrogen peroxide. Food Sci. Technol. Res. 13:275-279. https://doi.org/10.3136/fstr.13.275
  42. Haijin, M., Xiaolu, J. & Huashi, G. 2003. A k-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity. J. Appl. Phycol. 15:297-303. https://doi.org/10.1023/A:1025103530534
  43. Halliwell, B. 2008. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch. Biochem. Biophys. 476:107-112. https://doi.org/10.1016/j.abb.2008.01.028
  44. Halliwell, B. 2009. The wanderings of a free radical. Free Radic. Biol. Med. 46:531-542. https://doi.org/10.1016/j.freeradbiomed.2008.11.008
  45. Halliwell, B. & Gutteridge, J. M. C. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219:1-14.
  46. Halliwell, B. & Gutteridge, J. M. C. 2007. Free radicals in biology and medicine. Oxford University Press, New York, 851 pp.
  47. Harker, M., Berkaloff, C., Lemoine, Y., Britton, G., Young, A., Duval, J. -C., Rmiki, N. -E. & Rousseau, B. 1999. Effects of high light and dessication on the operation of the xanthophyll cycle in two marine brown algae. Eur. J. Phycol. 34:35-42. https://doi.org/10.1080/09670269910001736062
  48. He, Y. -Y. & Hader, D. -P. 2002. UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-L-cysteine. J. Photochem. Photobiol. B Biol. 66:115-124. https://doi.org/10.1016/S1011-1344(02)00231-2
  49. Heo, S. -J., Park, E. -J., Lee, K. -W. & Jeon, Y. -J. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour. Technol. 96:1613-1623. https://doi.org/10.1016/j.biortech.2004.07.013
  50. Hercberg, S., Ezzedine, K., Guinot, C., Preziosi, P., Galan, P., Bertrais, S., Estaquio, C., Briançon, S., Favier, A., Latreille, J. & Malvy, D. 2007. Antioxidant supplementation increases the risk of skin cancers in women but not in men. J. Nutr. 137:2098-2105. https://doi.org/10.1093/jn/137.9.2098
  51. Hercberg, S., Galan, P., Preziosi, P., Alfarez, M. -J. & Vazquez, C. 1998. The potential role of antioxidant vitamins in preventing cardiovascular diseases and cancers. Nutrition 14:513-520. https://doi.org/10.1016/S0899-9007(98)00040-9
  52. Holdt, S. & Kraan, S. Bioactive compounds in seaweed: functional food applications and legislation. J. Appl. Phycol. (in press).
  53. Hwang, H., Chen, T., Nines, R. G., Shin, H. -C. & Stoner, G. D. 2006. Photochemoprevention of UVB-induced skin carcinogenesis in SKH-1 mice by brown algae polyphenols. Int. J. Cancer 119:2742-2749. https://doi.org/10.1002/ijc.22147
  54. Jiang, H., Gao, K. & Helbling, E. W. 2008. UV-absorbing compounds in Porphyra haitanensis (Rhodophyta) with special reference to effects of dessication. J. Appl. Phycol. 20:387-395. https://doi.org/10.1007/s10811-007-9268-2
  55. Jimenez, J. T., O’Connell, S., Lyons, H., Bradley, B. & Hall, M. 2010. Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum. Chem. Pap. 64:434-442. https://doi.org/10.2478/s11696-010-0024-8
  56. Jimenez-Escrig, A., Jimenez-Jimenez, I., Pulido, R. & Saura-Calixto, F. 2001. Antioxidant activity of fresh and processed edible seaweeds. J. Sci. Food Agric. 81:530-534.
  57. Jormalainen, V., & Honkanen, T. 2004. Variation in natural selection for growth and phlorotannins in the brown alga Fucus vesiculosus. J. Evol. Biol. 17:807-820. https://doi.org/10.1111/j.1420-9101.2004.00715.x
  58. Josephine, A., Nithya, K., Amudha, G., Veena, C. K., Preetha, S. P. & Varalakshmi, P. 2008. Role of sulphated polysaccharides from Sargassum Wightii in Cyclosporine A-induced oxidative liver injury in rats. BMC Pharmacol. 8:4. https://doi.org/10.1186/1471-2210-8-4
  59. Kamenarska, Z., Serkedjieva, J., Najdenski, H., Stefanov, K., Tsvetkova, I., Dimitrova-Konaklieva, S. & Popov, S. 2009. Antibacterial, antiviral, and cytotoxic activities of some red and brown seaweeds from the Black Sea. Bot. Mar. 52:80-86. https://doi.org/10.1515/BOT.2009.030
  60. Kang, K., Park, Y., Hwang, H. J., Kim, S. H., Lee, J. G. & Shin, H. -C. 2003. Antioxidative properties of brown algae polyphenolics and their perspectives as chemopreventative agents against vascular risk factors. Arch. Pharm. Res. 26:286-293. https://doi.org/10.1007/BF02976957
  61. Kang, K. A., Bu, H. D., Park, D. S., Go, G. M., Jee, Y., Shin, T. & Hyun, J. W. 2005. Antioxidant activity of ethanol extract of Callophyllis japonica. Phytother. Res. 19:506-510. https://doi.org/10.1002/ptr.1692
  62. Karentz, D., McEuen, F. S., Land, M. C. & Dunlap, W. C. 1991. Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar. Biol. 108:157-166. https://doi.org/10.1007/BF01313484
  63. Kim, K. Y., Nguyen, T. H., Kurihara, H. & Kim, S. M. 2010. ${\alpha}$-Glucosidase inhibitory activity of bromophenol purified from the red alga Polyopes lancifolia. J. Food Sci. 75:H145-H150.
  64. Kranl, K., Schlesier, K., Bitsch, R., Hermann, H., Rohe, M. & Bohm, V. 2005. Comparing antioxidative food additives and secondary plant products: use of different assays. Food Chem. 93:171-175. https://doi.org/10.1016/j.foodchem.2004.11.012
  65. Kuda, T., Hishi, T. & Maekawa, S. 2006. Antioxidant properties of dried product of ‘haba-nori’, an edible brown alga, Petalonia binghamiae (J. Agardh) Vinogradova. Food Chem. 98:545-550. https://doi.org/10.1016/j.foodchem.2005.06.023
  66. Kumar, K. S., Ganesan, K. & Subba Rao, P. V. 2008. Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty: an edible seaweed. Food Chem. 107:289-295. https://doi.org/10.1016/j.foodchem.2007.08.016
  67. Lee, H. J., Kim, Y. A., Park, K. E., Jung, H. A., Yoo, J. S., Woong, A. J., Lee, B. -J. & Seo, Y. 2004. Studies on screening of seaweed extracts for peroxynitrite and DPPH radical scavenging activities. Ocean Polar Res. 26:59-64. https://doi.org/10.4217/OPR.2004.26.1.059
  68. Lee, S. -H., Athukorala, Y., Lee, J. -S. & Jeon, Y. -J. 2008. Simple separation of anticoagulant sulfated galactan from marine red algae. J. Appl. Phycol. 20:1053-1059. https://doi.org/10.1007/s10811-007-9306-0
  69. Le Tutour, B., Benslimane, F., Gouleau, M. P., Gouygou, J. P., Saadan, B., Quemeneur, F. 1998. Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum. J. Appl. Phycol. 10:121-129. https://doi.org/10.1023/A:1008007313731
  70. Lim, Y. Y. & Murtijaya, J. 2007. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT-Food Sci. Technol. 40:1664-1669. https://doi.org/10.1016/j.lwt.2006.12.013
  71. Lohrmann, N. L., Logan, B. A. & Johnson, A. S. 2004. Seasonal acclimatization of antioxidants and photosynthesis in Chondrus crispus and Mastocarpus stellatus, two co-occurring red algae with differing stress tolerances. Biol. Bull. 207:225-232. https://doi.org/10.2307/1543211
  72. Lopez-Lopez, I., Bastida, S., Ruiz-Capillas, C., Bravo, L., Larrea, M. T., Sanchez-Muniz, F., Cofrades, S. & Jimenez-Colmenero, F. 2009. Composition and antioxidant capacity of low-salt meat emulsion model systems containing edible seaweeds. Meat Sci. 83:492-498. https://doi.org/10.1016/j.meatsci.2009.06.031
  73. Luo, D., Zhang, Q., Wang, H., Cui, Y., Sun, Z., Yang, J., Zheng, Y., Jia, J., Yu, F., Wang, X. & Wang, X. 2009. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. Eur. J. Pharmacol. 617:33-40. https://doi.org/10.1016/j.ejphar.2009.06.015
  74. Manach, C., Scalbert, A., Morand, C., Remesy, C. & Jimenez, L. 2004. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79:727-747.
  75. Martinez, R. 2007. Effects of ultraviolet radiation on protein content, respiratory electron transport system (ETS) activity and superoxide dismutase (SOD) activity of Antarctic plankton. Polar Biol. 30:1159-1172. https://doi.org/10.1007/s00300-007-0273-3
  76. Maruyama, H., Watanabe, K. & Yamamoto, I. 1991. Effect of dietary kelp on lipid peroxidation and glutathione peroxidase activity in livers of rats given breast carcinogen DMBA. Nutr. Cancer 15:221-228. https://doi.org/10.1080/01635589109514130
  77. Matanjun, P., Mohamed, S., Mustapha, N. M., Muhammad, K. & Ming, C. H. 2008. Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. J. Appl. Phycol. 20:367-373. https://doi.org/10.1007/s10811-007-9264-6
  78. Nagai, T. & Yukimoto, T. 2003. Preparation and functional properties of beverages made from sea algae. Food Chem. 81:327-332. https://doi.org/10.1016/S0308-8146(02)00426-0
  79. Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I. & Nakamura, T. 2002. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J. Antimicrob. Chemother. 50:889-893. https://doi.org/10.1093/jac/dkf222
  80. Nahas, R., Abatis, D., Anagnostopoulou, M. A., Kefalas, P., Vagias, C. & Roussis, V. 2007. Radical-scavenging activity of Aegean Sea marine algae. Food Chem. 102:577-581. https://doi.org/10.1016/j.foodchem.2006.05.036
  81. Nisizawa, K. 2002. Seaweeds Kaiso: bountiful harvest from the seas. Japan Seaweed Association, Kochi, 106 pp.
  82. Oben, J., Enonchong, E., Kuate, D., Mbanya, D., Thomas, T. C., Hildreth, D. J., Ingolia, T. D. & Tempesta, M. S. 2007. The effects of ProAlgaZyme novel algae infusion on metabolic syndrome and markers of cardiovascular health. Lipids Health Dis. 6:20. https://doi.org/10.1186/1476-511X-6-20
  83. Okai, Y., Higashi-Okai, K., Yano, Y. & Otani, S. 1996. Identification of antimutagenic substances in an extract of edible red alga, Porphyra tenera (Asakusa-nori). Cancer Lett. 100:235-240. https://doi.org/10.1016/0304-3835(95)04101-X
  84. Ou, B., Huang, D., Hampsch-Woodill, M., Flanagan, J. A. & Deemer, E. K. 2002. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J. Agric. Food Chem. 50:3122-3128. https://doi.org/10.1021/jf0116606
  85. Park, D. -S., Lee, K. -H., Kim, H. -C., Ahn, M. -J., Moon, C. -J., Ko, M. -S., Lee, K. -K., Go, G. -M. & Shin, T. -K. 2005. Effects of Callophyllis japonica powder on carbon tetrachloride-induced liver injury in rats. Orient. Pharm. Exp. Med. 5:231-235. https://doi.org/10.3742/OPEM.2005.5.3.231
  86. Parys, S., Kehraus, S., Krick, A., Glombitza, K. -W., Carmeli, S., Klimo, K., Gerhauser, C. & Konig, G. M. 2010. In vitro chemopreventive potential of fucophlorethols from the brown alga Fucus vesiculosus L. by antioxidant activity and inhibition of selected cytochrome P450 enzymes. Phytochemistry 71:221-229. https://doi.org/10.1016/j.phytochem.2009.10.020
  87. Pinto, E., Sigaud-Kutner, T. C. S., Leitao, M. A. S., Okamoto, O. K., Morse, D. & Colepicolo, P. 2003. Heavy metal-induced oxidative stress in algae. J. Phycol. 39:1008-1018. https://doi.org/10.1111/j.0022-3646.2003.02-193.x
  88. Plaza, M., Santoyo, S., Jaime, L., Reina, G. G. -B., Herrero, M., Senorans, F. J. & Ibanez, E. 2010. Screening for bioactive compounds from algae. J. Pharm. Biomed. Anal. 51:450-455. https://doi.org/10.1016/j.jpba.2009.03.016
  89. Rastogi, R. P., Richa, Sinha, R. P., Singh, S. P. & Hader, D. -P. 2010. Photoprotective compounds from marine organisms. J. Ind. Microbiol. Biotechnol. 37:537-558. https://doi.org/10.1007/s10295-010-0718-5
  90. Rhatigan, P. 2009. Irish seaweed kitchen: the comprehensive guide to healthy everyday cooking with seaweeds. Booklink, Holywood, 288 pp.
  91. Riccioni, G. 2009. Carotenoids and cardiovascular disease. Curr. Atheroscler. Rep. 11:434-439. https://doi.org/10.1007/s11883-009-0065-z
  92. Rocha de Souza, M. C., Marques, C. T., Dore, C. M. G., Ferreira da Silva, F. R., Rocha, H. A. O. & Leite, E. L. 2007. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J. Appl. Phycol. 19:153-160. https://doi.org/10.1007/s10811-006-9121-z
  93. Romay, C., Gonzalez, R., Ledon, N., Remirez, D. & Rimbau, V. 2003. C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr. Protein Pept. Sci. 4:207-216. https://doi.org/10.2174/1389203033487216
  94. Ruperez, P., Ahrazem, O. & Leal, J. A. 2002. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 50:840-845. https://doi.org/10.1021/jf010908o
  95. Sachindra, N. M., Sato, E., Maeda, H., Hosokawa, M., Niwano, Y., Kohno, M. & Miyashita, K. 2007. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J. Agric. Food Chem. 55:8516-8522. https://doi.org/10.1021/jf071848a
  96. Sander, C. S., Chang, H., Hamm, F., Elsner, P. & Thiele, J. J. 2004. Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis. Int. J. Dermatol. 43:326-335. https://doi.org/10.1111/j.1365-4632.2004.02222.x
  97. Sangeetha, R. K., Bhaskar, N. & Baskaran, V. 2009. Comparative effects of ${\beta}$-carotene and fucoxanthin on retinol deficiency induced oxidative stress in rats. Mol. Cell Biochem. 331:59-67. https://doi.org/10.1007/s11010-009-0145-y
  98. Scalbert, A., Manach, C., Morand, C., Remesy, C. & Jimenez, L. 2005. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 45:287-306. https://doi.org/10.1080/1040869059096
  99. Schubert, N., Garcia-Mendoza, E. & Pacheco-Ruiz, I. 2006. Carotenoid composition of marine red algae. J. Phycol. 42:1208-1216. https://doi.org/10.1111/j.1529-8817.2006.00274.x
  100. Schwartz, J. L. 1996. The dual roles of nutrients as antioxidants and prooxidants: their effects on tumor cell growth. J. Nutr. 126(4 Suppl):1221S-1227S.
  101. Schwarz, K., Bertelsen, G., Nissen, L. R., Gardner, P. T., Heinonen, M. I., Hopia, A., Huynh-Ba, T., Lambelet, P., McPhail, D., Skibsted, L. H. & Tijburg, L. 2001. Investigation of plant extracts for the protection of processed foods against lipid oxidation: comparison of antioxidant assays based on radical scavenging, lipid oxidation and analysis of the principal antioxidant compounds. Eur. Food Res. Technol. 212:319-328. https://doi.org/10.1007/s002170000256
  102. Sekar, S. & Chandramohan, M. 2008. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J. Appl. Phycol. 20:113-136. https://doi.org/10.1007/s10811-007-9188-1
  103. Shimazu, T., Kuriyama, S., Hozawa, A., Ohmori, K., Sato, Y., Nakaya, N., Nishino, Y., Tsubono, Y. & Tsuji, I. 2007. Dietary patterns and cardiovascular disease mortality in Japan: a prospective cohort study. Int. J. Epidemiol. 36:600-609. https://doi.org/10.1093/ije/dym005
  104. Shin, H. -C., Hwang, H. J., Kang, K. J. & Lee, B. H. 2006. An antioxidative and anti-inflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch. Pharm. Res. 29:165-171. https://doi.org/10.1007/BF02974279
  105. Sinha, R. P., Klisch, M., Groniger, A. & Hader, D. -P. 1998. Ultraviolet-absorbing/screening substances in cyanobacteria, phytoplankton, and macroalgae. J. Photochem. Photobiol. B Biol. 47:83-94. https://doi.org/10.1016/S1011-1344(98)00198-5
  106. Smit, A. J. 2004. Medicinal and pharmaceutical uses of seaweed natural products: a review. J. Appl. Phycol. 16:245-262. https://doi.org/10.1023/B:JAPH.0000047783.36600.ef
  107. Soni, B., Visavadiya, N. P. & Madamwar, D. 2009. Attenuation of diabetic complications by C-phycoerythrin in rats: antioxidant activity of C-phycoerythrin including copper-induced lipoprotein and serum oxidation. Br. J. Nutr. 102:102-109. https://doi.org/10.1017/S0007114508162973
  108. Steenvoorden, D. P. T. & van Henegouwen, G. M. J. B. 1997. The use of endogenous antioxidants to improve photoprotection. J. Photochem. Photobiol. B Biol. 41:1-10. https://doi.org/10.1016/S1011-1344(97)00081-X
  109. Sugawara, T., Matsubara, K., Akagi, R., Mori, M. & Hirata, T. 2006. Antiangiogenic activity of brown algae fucoxanthin and its deacetylated product, fucoxanthinol. J. Agric. Food Chem. 54:9805-9810. https://doi.org/10.1021/jf062204q
  110. Talarico, L. B., Zibetti, R. G. M., Faria, P. C. S., Scolaro, L. A., Duarte, M. E. R., Noseda, M. D., Pujol, C. A. & Damonte, E. B. 2004. Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. Int. J. Biol. Macromol. 34:63-71. https://doi.org/10.1016/j.ijbiomac.2004.03.002
  111. Taskin, E., Caki, Z., Ozturk, M. & Taskin, E. 2010. Assessment of in vitro antitumoral and antimicrobial activities of marine algae harvested from the eastern Mediterranean sea. Afr. J. Biotechnol. 9:4272-4277.
  112. Trinchero, J., Ponce, N. M. A., Cordoba, O. L., Flores, M. L., Pampuro, S., Stortz, C. A., Salomon, H. & Turk, G. 2009. Antiretroviral activity of fucoidans extracted from the brown seaweed Adenocystis utricularis. Phytother. Res. 23:707-712. https://doi.org/10.1002/ptr.2723
  113. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M. & Telser, J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39:44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  114. Veena, C. K., Josephine, A., Preetha, S. P. & Varalakshmi, P. 2007. Beneficial role of sulfated polysaccharides from edible seaweed Fucus vesicuolosus in experimental hyperoxaluria. Food Chem. 100:1552-1559. https://doi.org/10.1016/j.foodchem.2005.12.040
  115. Wang, H., Chiu, L. C. M., Ooi, V. E. C. & Ang, P. O. 2008. Seaweed polysaccharides with anticancer potential. Bot. Mar. 51:313-319. https://doi.org/10.1515/BOT.2008.041
  116. Wang, T., Jonsdottir, R. & Olafsdottir, G. 2009. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 116:240-248. https://doi.org/10.1016/j.foodchem.2009.02.041
  117. Witvrouw, M. & De Clercq, E. 1997. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen. Pharmacol. 29:497-511. https://doi.org/10.1016/S0306-3623(96)00563-0
  118. Wong, C. K., Ooi, V. E. C. & Ang, P. O. 2000. Protective effects of seaweeds against liver injury caused by carbon tetrachloride in rats. Chemosphere 41:173-176. https://doi.org/10.1016/S0045-6535(99)00407-5
  119. Yabuta, Y., Fujimura, H., Kwak, C. S., Enomoto, T. & Watanabe, F. 2010. Antioxidant activity of the phycoerythrobilin compound formed from a dried Korean purple laver (Porphyra sp.) during in vitro digestion. Food Sci. Technol. Res. 16:347-351. https://doi.org/10.3136/fstr.16.347
  120. Yan, X., Chuda, Y., Suzuki, M. & Nagata, T. 1999. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci. Biotechnol. Biochem. 63:605-607. https://doi.org/10.1271/bbb.63.605
  121. Yan, X., Nagata, T. & Fan, X. 1998. Antioxidative activities in some common seaweeds. Plant Foods Hum. Nutr. 52:253-262. https://doi.org/10.1023/A:1008007014659
  122. Yang, Y. J., Nam, S. -J., Kong, G. & Kim, M. K. 2010. A case-control study on seaweed consumption and the risk of breast cancer. Br. J. Nutr. 103:1345-1353. https://doi.org/10.1017/S0007114509993242
  123. Yangthong, M., Hutadilok-Towatana, N. & Phromkunthong, W. 2009. Antioxidant activities of four edible seaweeds from the southern coast of Thailand. Plant Foods Hum. Nutr. 64:218-223. https://doi.org/10.1007/s11130-009-0127-y
  124. Yasuhara-Bell, J. & Lu, Y. 2010. Marine compounds and their antiviral activities. Antivir. Res. 86:231-240. https://doi.org/10.1016/j.antiviral.2010.03.009
  125. Ye, H., Wang, K., Zhou, C., Liu, J. & Zeng, X. 2008. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chem. 111:428-432. https://doi.org/10.1016/j.foodchem.2008.04.012
  126. Yoshiki, M., Tsuge, Y., Tsuruta, Y., Yoshimura, T., Koganemaru, K., Sumi, T., Matsui, T. & Matsumoto, K. 2009. Production of new antioxidant compound from mycosporine-like amino acid, Porphyra-334 by heat treatment. Food Chem. 113:1127-1132. https://doi.org/10.1016/j.foodchem.2008.08.087
  127. You, S. G., Yang, C., Lee, H. Y. & Lee, B. -Y. 2010. Molecular characteristics of partially hydrolyzed fucoidans from sporophyll of Undaria pinnatifida and their in vitro anticancer activity. Food Chem. 119:554-559. https://doi.org/10.1016/j.foodchem.2009.06.054
  128. Yuan, Y. V., Bone, D. E. & Carrington, M. F. 2005a. Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chem. 91:485-494. https://doi.org/10.1016/j.foodchem.2004.04.039
  129. Yuan, Y. V., Carrington, M. F. & Walsh, N. A. 2005b. Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food Chem. Toxicol. 43:1073-1081. https://doi.org/10.1016/j.fct.2005.02.012
  130. Yuan, Y. V. & Walsh, N. A. 2006. Antioxidative and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem. Toxicol. 44:1144-1150. https://doi.org/10.1016/j.fct.2006.02.002
  131. Yuan, Y. V., Westcott, N. D., Hu, C. & Kitts, D. D. 2009. Mycosporine-like amino acid composition of the edible red alga, Palmaria palmata (Dulse) harvested from the west and east coasts of Grand Manan Island, New Brunswick. Food Chem. 112:321-328. https://doi.org/10.1016/j.foodchem.2008.05.066
  132. Zhang, J., Tiller, C., Shen, J., Wang, C., Girouard, G. S., Dennis, D., Barrow, C. J., Miao, M. & Ewart, H. S. 2007a. Antidiabetic properties of polysaccharide- and polyphenolic-enriched fractions from the brown seaweed Ascophyllum nodosum. Can. J. Physiol. Pharmacol. 85:1116-1123. https://doi.org/10.1139/Y07-105
  133. Zhang, Q., Li, N., Zhou, G., Lu, X., Xu, Z. & Li, Z. 2003. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodophyta) in aging mice. Pharmacol. Res. 48:151-155. https://doi.org/10.1016/S1043-6618(03)00103-8
  134. Zhang, W. -W., Duan, X. -J., Huang, H. -L., Zhang, Y. & Wang, B. -G. 2007b. Evaluation of 28 marine algae from the Qingdao coast for antioxidative capacity and determination of antioxidant efficiency and total phenolic content of fractions and subfractions derived from Symphyocladia latiuscula (Rhodomelaceae). J. Appl. Phycol. 19:97-108. https://doi.org/10.1007/s10811-006-9115-x
  135. Zhao, X., Xue, C. -H. & Li, B. -F. 2008. Study of antioxidant activities of sulfated polysaccharides from Laminaria japonica. J. Appl. Phycol. 20:431-436. https://doi.org/10.1007/s10811-007-9282-4
  136. Zubia, M., Fabre, M. S., Kerjean, V., Le Lann, K., Stiger-Pouvreau, V., Fauchon, M. & Deslandes, E. 2009. Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem. 116:693-701. https://doi.org/10.1016/j.foodchem.2009.03.025
  137. Zubia, M., Robledo, D. & Freile-Pelegrin, Y. 2007. Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. J. Appl. Phycol. 19:449-458. https://doi.org/10.1007/s10811-006-9152-5

Cited by

  1. Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery vol.50, 2016, https://doi.org/10.1016/j.tifs.2016.01.019
  2. Effects of Water Activity on the Lipid Oxidation and Antioxidants of Dried Laver (Porphyra) During Storage in the Dark vol.78, pp.8, 2013, https://doi.org/10.1111/1750-3841.12197
  3. Quantification of polyphenolic antioxidants and free radical scavengers in marine algae 2017, https://doi.org/10.1007/s10811-017-1139-x
  4. Selenium accumulation and metabolism in algae vol.189, 2017, https://doi.org/10.1016/j.aquatox.2017.05.011
  5. Биохимический анализ некоторых морских макроводорослей побережья Коллама (Индия) vol.27, pp.2, 2017, https://doi.org/10.15407/alg27.02.129
  6. Marine Bioactive Compounds and Their Health Benefits: A Review vol.14, pp.4, 2015, https://doi.org/10.1111/1541-4337.12136
  7. Antioxidant, Antiproliferative, and Antiangiogenesis Effects of Polyphenol-Rich Seaweed (Sargassum muticum) vol.2013, 2013, https://doi.org/10.1155/2013/604787
  8. Synthesis and antioxidant activities of 2-oxo-quinoline-3-carbaldehyde Schiff-base derivatives vol.23, pp.1, 2013, https://doi.org/10.1016/j.bmcl.2012.11.006
  9. Effects of high water content and drying pre-treatment on supercritical CO2 extraction from Dunaliella salina microalgae: Experiments and modelling vol.116, 2016, https://doi.org/10.1016/j.supflu.2016.06.007
  10. Differences in the oxidative stress and antioxidant responses of three marine macroalgal species upon UV exposure vol.8, pp.2, 2016, https://doi.org/10.1007/s13530-016-0267-z
  11. Antioxidant and Cytoprotective Activities of Fucus spiralis Seaweed on a Human Cell in Vitro Model vol.18, pp.2, 2017, https://doi.org/10.3390/ijms18020292
  12. Biological activities and health benefit effects of natural pigments derived from marine algae vol.3, pp.4, 2011, https://doi.org/10.1016/j.jff.2011.07.001
  13. In vivoandin vitroantioxidant activity and hepatoprotective properties of polyphenols fromHalimeda opuntia(Linnaeus) Lamouroux vol.17, pp.2, 2012, https://doi.org/10.1179/1351000212Y.0000000003
  14. Antioxidant Activity of Hawaiian Marine Algae vol.10, pp.12, 2012, https://doi.org/10.3390/md10020403
  15. Highly oxygenated antioxidative 2H-chromen derivative from the red seaweed Gracilaria opuntia with pro-inflammatory cyclooxygenase and lipoxygenase inhibitory properties 2017, https://doi.org/10.1080/14786419.2017.1378209
  16. The content and bioaccessibility of carotenoids from selected commercially available health supplements vol.70, pp.OCE3, 2011, https://doi.org/10.1017/S0029665111001029
  17. The protective effect of laver extract against the UVA- and UVB-induced damage in HaCaT cells vol.4, pp.3, 2012, https://doi.org/10.1007/s13530-012-0134-5
  18. Application of Hansen solubility approach for the subcritical and supercritical selective extraction of phlorotannins from Cystoseira abies-marina vol.6, pp.97, 2016, https://doi.org/10.1039/C6RA16862K
  19. Cytoprotective Effects of the Red Marine Alga Chondrus canaliculatus Against Maneb-Induced Hematotoxicity and Bone Oxidative Damages in Adult Rats 2017, https://doi.org/10.1007/s12011-017-1151-7
  20. Algal bioactive compounds in the cosmeceutical industry: a review vol.56, pp.4, 2017, https://doi.org/10.2216/15.58.1
  21. Interactive effects of marine heatwaves and eutrophication on the ecophysiology of a widespread and ecologically important macroalga vol.62, pp.5, 2017, https://doi.org/10.1002/lno.10551
  22. Anti-oxidant activity of polysaccharides extracted from Isocrysis galbana using RSM optimized conditions vol.60, 2013, https://doi.org/10.1016/j.ijbiomac.2013.05.014
  23. Aqueous extracts of Ascophyllum nodosum obtained by ultrasound-assisted extraction: effects of drying temperature of seaweed on the properties of extracts 2017, https://doi.org/10.1007/s10811-017-1159-6
  24. Brown Algae Padina sanctae-crucis Børgesen: A Potential Nutraceutical vol.15, pp.10, 2017, https://doi.org/10.3390/md15100251
  25. Effect of phlorotannin-rich extracts of Ascophyllum nodosum and Himanthalia elongata (Phaeophyceae) on cellular oxidative markers in human HepG2 cells vol.25, pp.1, 2013, https://doi.org/10.1007/s10811-012-9832-2
  26. Chemoprevention of Diethylnitrosamine-Initiated and Phenobarbital-Promoted Hepatocarcinogenesis in Rats by Sulfated Polysaccharides and Aqueous Extract of Ulva lactuca vol.14, pp.6, 2015, https://doi.org/10.1177/1534735415590157
  27. Population ecology of Palmaria palmata (Palmariales, Rhodophyta) from harvested and non-harvested shores on Digby Neck, Nova Scotia, Canada vol.27, pp.1, 2012, https://doi.org/10.4490/algae.2012.27.1.033
  28. Proximate composition, phenolic content and in vitro antioxidant activity of aqueous extracts of the seaweeds Ascophyllum nodosum , Bifurcaria bifurcata and Fucus vesiculosus . Effect of addition of the extracts on the oxidative stability of canola oil under accelerated storage conditions vol.99, 2017, https://doi.org/10.1016/j.foodres.2016.11.009
  29. Consumption of seaweeds and the human brain 2017, https://doi.org/10.1007/s10811-016-1049-3
  30. In vitro Analysis of Antioxidant, Antimicrobial and Antiproliferative Activity of Enteromorpha antenna, Enteromorpha linza and Gracilaria corticata Extracts vol.8, pp.4, 2013, https://doi.org/10.17795/jjnpp-11277
  31. Algae as nutritional and functional food sources: revisiting our understanding vol.29, pp.2, 2017, https://doi.org/10.1007/s10811-016-0974-5
  32. Potential applications of nuisance microalgae blooms vol.27, pp.3, 2015, https://doi.org/10.1007/s10811-014-0410-7
  33. Bioactive components of the edible strain of red alga, Chondrus crispus, enhance oxidative stress tolerance in Caenorhabditis elegans vol.5, pp.3, 2013, https://doi.org/10.1016/j.jff.2013.04.001
  34. Antidiabetic and antioxidant activities of brown and red macroalgae from the Persian Gulf 2017, https://doi.org/10.1007/s10811-017-1152-0
  35. Cultivation of a morphologically distinct strain of the sugar kelp, Saccharina latissima forma angustissima, from coastal Maine, USA, with implications for ecosystem services vol.29, pp.4, 2017, https://doi.org/10.1007/s10811-017-1102-x
  36. Studies on Anion, Element, Chromaticity and Antioxidant Activities of Commercial Dried Lavers (Porphyra yezoensis) Cultivated in Korea vol.43, pp.2, 2014, https://doi.org/10.3746/jkfn.2014.43.2.323
  37. Isolation of stigmast-5,24-dien-3-ol from marine brown algae Sargassum tenerrimum and its antipredatory activity vol.5, pp.63, 2015, https://doi.org/10.1039/C5RA07489D
  38. Successive solvent extraction and GC–MS analysis for the evaluation of the phytochemical constituents of the filamentous green alga Spirogyra longata vol.41, pp.3, 2015, https://doi.org/10.1016/j.ejar.2015.06.001
  39. Assessment of antioxidant activity in Victorian marine algal extracts using high performance thin-layer chromatography and multivariate analysis vol.1468, 2016, https://doi.org/10.1016/j.chroma.2016.09.041
  40. Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system vol.29, pp.1, 2014, https://doi.org/10.4490/algae.2014.29.1.035
  41. Antioxidant marine algae phlorotannins and radioprotection: A review of experimental evidence vol.116, pp.5, 2014, https://doi.org/10.1016/j.acthis.2014.03.008
  42. A role for dietary macroalgae in the amelioration of certain risk factors associated with cardiovascular disease vol.54, pp.6, 2015, https://doi.org/10.2216/15-77.1
  43. Lipid oxidation-related characteristics of gim bugak (Korean fried cuisine with Porphyra) affected by frying oil vol.26, pp.3, 2017, https://doi.org/10.1007/s10068-017-0088-0
  44. A mathematical model of the commercial harvest of Palmaria palmata (Palmariales, Rhodophyta) on Digby Neck, Nova Scotia, Canada vol.27, pp.1, 2012, https://doi.org/10.4490/algae.2012.27.1.043
  45. Nutritional and Chemical Composition and Antiviral Activity of Cultivated Seaweed Sargassum naozhouense Tseng et Lu vol.11, pp.12, 2012, https://doi.org/10.3390/md11010020
  46. Composition and Antioxidant Activity of Dried Laver, Dolgim vol.45, pp.4, 2013, https://doi.org/10.9721/KJFST.2013.45.4.403
  47. In VitroDigestibility of Different Commercial Edible Algae Products vol.23, pp.5, 2014, https://doi.org/10.1080/10498850.2012.721873
  48. Light effects on lipid oxidation, antioxidants, and pigments in dried laver (Porphyra) during storage vol.23, pp.3, 2014, https://doi.org/10.1007/s10068-014-0095-3
  49. Photo-protective properties of Lomentaria hakodatensis yendo against ultraviolet B radiation-induced keratinocyte damage vol.17, pp.6, 2012, https://doi.org/10.1007/s12257-012-0336-3
  50. Effects of diet enriched with restructured meats, containing Himanthalia elongata, on hypercholesterolaemic induction, CYP7A1 expression and antioxidant enzyme activity and expression in growing rats vol.129, pp.4, 2011, https://doi.org/10.1016/j.foodchem.2011.06.019
  51. Evaluation of total reducing capacity in three Dunaliella salina (Dunal) Teodoresco isolates vol.26, pp.1, 2014, https://doi.org/10.1007/s10811-013-0074-8
  52. Effect of storage time on phlorotannin content and antioxidant activity of six Sargassum species from Nhatrang Bay, Vietnam vol.28, pp.1, 2016, https://doi.org/10.1007/s10811-015-0600-y
  53. Cancer Chemopreventive Effect of Spirogyra Neglecta (Hassall) Kützing on Diethylnitrosamine-Induced Hepatocarcinogenesis in Rats vol.15, pp.4, 2014, https://doi.org/10.7314/APJCP.2014.15.4.1611
  54. In vivo UVB-photoprotective activity of extracts from commercial marine macroalgae vol.50, pp.3-4, 2012, https://doi.org/10.1016/j.fct.2012.01.004
  55. Alleviation of Metal-Induced Toxicity in Aquatic Plants by Exogenous Compounds: a Mini-Review vol.227, pp.6, 2016, https://doi.org/10.1007/s11270-016-2907-y
  56. Prospects and challenges for industrial production of seaweed bioactives vol.51, pp.5, 2015, https://doi.org/10.1111/jpy.12326
  57. Extraction Optimization, Purification, Antioxidant Activity, and Preliminary Structural Characterization of Crude Polysaccharide from an Arctic Chlorella sp. vol.10, pp.3, 2018, https://doi.org/10.3390/polym10030292
  58. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products vol.17, pp.1, 2018, https://doi.org/10.1186/s12934-018-0879-x
  59. Therapeutic Effect of Ecklonia cava Extract in Letrozole-Induced Polycystic Ovary Syndrome Rats vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.01325
  60. Seasonal effects on antioxidant and anti-HIV activities of Brazilian seaweeds pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1615-y
  61. Intensive land-based production of red and green macroalgae for human consumption in the Pacific Northwest: an evaluation of seasonal growth, yield, nutritional composition, and contaminant levels vol.33, pp.1, 2018, https://doi.org/10.4490/algae.2018.33.2.21
  62. Marine natural pigments as potential sources for therapeutic applications vol.38, pp.5, 2018, https://doi.org/10.1080/07388551.2017.1398713
  63. (Ulvophyceae) from the Persian Gulf as potential sources of protein, essential amino acids and fatty acids vol.66, pp.2, 2018, https://doi.org/10.1111/pre.12212
  64. Recent developments in aquaculture of Palmaria palmata (Linnaeus) (Weber & Mohr 1805): cultivation and uses vol.11, pp.1, 2017, https://doi.org/10.1111/raq.12224