DOI QR코드

DOI QR Code

CO2 Solubilities in Amide-based Brønsted Acidic Ionic Liquids

  • Palgunadi, Jelliarko (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Im, Jin-Kyu (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Kang, Je-Eun (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Kim, Hoon-Sik (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Cheong, Min-Serk (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University)
  • Published : 2010.01.20

Abstract

A distinguished class of hydrophobic ionic liquids bearing a Br${\o}$nsted acidic character derived from amide-like compounds were prepared by a neutralization reaction of N,N-diethylformamide, N,N-dibutylformamide, 1-formylpiperidine, and $\varepsilon$-caprolactam with trifluoroacetic acid and physical absorptions of $CO_2$ in these ionic liquids were demonstrated and evaluated. $CO_2$ solubilities in these ionic liquids were influenced by the molecular structure of the cation and were apparently increased with the molar volume. Comparison based on a volume unit reveals that $CO_2$ solubilities in these liquids are relatively higher than those in imidazolium-based ionic liquids. Henry's coefficients calculated from low-pressure solubility tests at 313 to 333 K were used to derive the thermodynamics quantities. Enthalpy and entropy of solvation may share equal contributions in solubility.

References

  1. Plechkova, N. V.; Seddon, K. R. Chem. Soc. Rev. 2008, 37, 123. https://doi.org/10.1039/b006677j
  2. Huang, J.-F.; Baker, G. A.; Luo, H.; Hong, K.; Li, Q.-F.; Bjerrum, N. J.; Dai, S. Green Chem. 2006, 8, 599. https://doi.org/10.1039/b604777g
  3. Nurakhmetov, N. N.; Omarova, R. A.; Ospanov, Kh. K. Russ. J. Coord. Chem. 2002, 28, 272. https://doi.org/10.1023/A:1015224104880
  4. Zhang, L.; Li, H.; Wang, Y.; Hu, X. J. Phys. Chem. B 2007, 111, 11016. https://doi.org/10.1021/jp0749064
  5. Du, Z.; Li, Z.; Guo, S.; Zhang, J.; Zhu, L.; Deng, Y. J. Phys. Chem. B 2005, 109, 19542. https://doi.org/10.1021/jp0529669
  6. Xu, F.; Chen, H.; Zhang, H.; Zhou, X.; Cheng, G. J. Mol. Catal. A 2009, 307, 9. https://doi.org/10.1016/j.molcata.2009.03.003
  7. Zhang, L.; Xian, M.; He, Y.; Li, L.; Yang, J.; Yu, S.; Xu, X. Bioresource Technol. 2009, 100, 4368. https://doi.org/10.1016/j.biortech.2009.04.012
  8. Qureshi, Z. S.; Deshmukh, K. M.; Bhor, M. D.; Bhanage, B. M. Catal. Commun. 2009, 10, 833. https://doi.org/10.1016/j.catcom.2008.12.048
  9. Blanchard, L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F. Nature 1999, 399, 28.
  10. Zhang, Z.; Wu, W.; Wang, B.; Chen, J.; Shen, D.; Han, B. J. Supercritical Fluids 2007, 40, 1. https://doi.org/10.1016/j.supflu.2006.04.011
  11. Kuhne, E.; Witkamp, G.-J.; Peters, C. J. Green Chem. 2008, 10, 929. https://doi.org/10.1039/b801362d
  12. Kuhne, E.; Santarossa, S.; Witkamp, G.-J.; Peters, C. J. Green Chem. 2008, 10, 762. https://doi.org/10.1039/b801068d
  13. Sharma, Y. O.; Degani, M. S. Green Chem. 2009, 11, 526. https://doi.org/10.1039/b818540a
  14. Anthony, J. L.; Aki, S. N. V. K.; Maginn, E. J.; Brennecke, J. F. Int. J. Environ. Technol. Manage. 2004, 4, 105.
  15. Baltus, R. E.; Counce, R. M.; Culbertson, B. H.; Luo, H.; DePaoli, D. W.; Dai, S.; Duckworth, D. C. Sep. Sci. Technol. 2005, 40, 525. https://doi.org/10.1081/SS-200042513
  16. Kamps, A. P.-S.; Tuma, D.; Xia, J.; Maurer, G. J. Chem. Eng. Data 2003, 48, 746. https://doi.org/10.1021/je034023f
  17. Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J. J. Am. Chem. Soc. 2004, 126, 5300. https://doi.org/10.1021/ja039615x
  18. Baltus, R. E.; Culbertson, B. H.; Dai, S.; Luo, H.; DePaoli, D. W. J. Phys. Chem. B 2004, 108, 721. https://doi.org/10.1021/jp036051a
  19. Kim, Y. S.; Choi, W. Y.; Jang, J. H.; Yoo, K.-P.; Lee, C. S. Fluid Phase Equilib. 2005, 228-229, 439.
  20. Costantini, M.; Toussaint, V. A.; Shariati, A.; Peters, C. J.; Kikic, I. J. Chem. Eng. Data 2005, 50, 52. https://doi.org/10.1021/je049870c
  21. Jacquemin, J.; Costa Gomes, M. F.; Husson, P.; Majer, V. J. Chem. Thermodyn. 2006, 38, 490. https://doi.org/10.1016/j.jct.2005.07.002
  22. Chen, Y.; Zhang, S.; Yuan, X.; Zhang, Y.; Zhang, X.; Dai, W.; Mori, R. Thermochim. Acta 2006, 441, 42. https://doi.org/10.1016/j.tca.2005.11.023
  23. Kumelan, J.; Kamps, Á. P.-S.; Tuma, D.; Maurer, G. J. Chem. Thermodyn. 2006, 38, 1396. https://doi.org/10.1016/j.jct.2006.01.013
  24. Yuan, X.; Zhang, S.; Liu, J.; Lu, X. Fluid Phase Equilib. 2007, 257, 195. https://doi.org/10.1016/j.fluid.2007.01.031
  25. Camper, D.; Scovazzo, P.; Koval, C.; Noble, R. Ind. Eng. Chem. Res. 2004, 43, 3049. https://doi.org/10.1021/ie034097k
  26. Palgunadi, J.; Kang, J. E.; Cheong, M.; Kim, H.; Lee, H.; Kim, H. S. Bull. Korean Chem. Soc. 2009, 30, 1749. https://doi.org/10.5012/bkcs.2009.30.8.1749
  27. Dymond, J. H.; Marsh, K. N.; Wilhoit, R. C.; Wong, K. C. The Virial Coefficients of Pure Gases and Mixture; Springer-Verlag: Berlin Heidelberg, 2002; pp 28-30.
  28. Shiflett, M. B.; Yokozeki, A. J. Chem. Eng. Data 2009, 54, 108. https://doi.org/10.1021/je800701j
  29. Blanchard, L. A.; Gu, Z.; Brennecke, J. F. J. Phys. Chem. B 2001, 105, 2437. https://doi.org/10.1021/jp003309d
  30. Aki, S. N. V. K.; Mellein, B. R.; Saurer, E. M.; Brennecke, J. F. J. Phys. Chem. B 2004, 108, 20355. https://doi.org/10.1021/jp046895+
  31. Jacquemin, J.; Husson, P.; Majer, V.; Costa Gomes, M. F. J. Solution Chem. 2007, 36, 967. https://doi.org/10.1007/s10953-007-9159-9
  32. Muldoon, M. J.; Aki, S. N. V. K.; Anderson, J. L.; Dixon, J. K.; Brennecke, J. F. J. Phys. Chem. B 2007, 111, 9001. https://doi.org/10.1021/jp071897q
  33. Kurnia, K. A.; Harris, F.; Wilfred, C. D.; Mutalib, M. I. A.; Murugesan, T. J. Chem. Thermodyn. 2009, 41, 1069. https://doi.org/10.1016/j.jct.2009.04.003
  34. Krause, D.; Benson, B. B. J. Solution Chem. 1989, 18, 823. https://doi.org/10.1007/BF00685062
  35. Scovazzo, P.; Camper, D.; Kieft, J.; Poshusta, J.; Koval, C.; Noble, R. Ind. Eng. Chem. Res. 2004, 43, 6855. https://doi.org/10.1021/ie049601f
  36. Kazarian, S. G.; Briscoe, B. J.; Welton, T. Chem. Commun. 2000, 20, 2047.
  37. Raveendran, P.; Wallen, S. L. J. Am. Chem. Soc. 2002, 124, 12590. https://doi.org/10.1021/ja0174635
  38. Park, Y.-K. J. of Supercritical Fluids 2005, 36, 154. https://doi.org/10.1016/j.supflu.2005.03.010
  39. Bhargava, B. L.; Balasubramanian, S. Chem. Phys. Lett. 2007, 242.
  40. Kim, K. H.; Kim, Y. J. Phys. Chem. A 2008, 112, 1596. https://doi.org/10.1021/jp709648q
  41. Seki, T.; Grunwaldt, J.-D.; Baiker, A. J. Phys. Chem. B 2009, 113, 114. https://doi.org/10.1021/jp800424d
  42. Bara, J. E.; Carlisle, T. K.; Gabriel, C. J.; Camper, D.; Finotello,; Gin, D. L.; Noble, R. D. Ind. Eng. Chem. Res. 2009, 48, 2739. https://doi.org/10.1021/ie8016237
  43. Palgunadi, J.; Kang, J. E.; Nguyen, D. Q.; Kim, J. H.; Min, B. K.; Lee, S. D.; Kim, H.; Kim, H. S. Thermochim. Acta 2009, 494, 94. https://doi.org/10.1016/j.tca.2009.04.022
  44. Anderson, J. L.; Dixon, J. K.; Brennecke, J. F. Acc. Chem. Res. 2007, 40, 1208. https://doi.org/10.1021/ar7001649
  45. Jacquemin, J.; Husson, P.; Majer, V.; Padua, A. A. H.; Gomes, M. F. C. Green Chem. 2008, 10, 944. https://doi.org/10.1039/b802761g
  46. Yokozeki, A.; Shiflett, M. B.; Junk, C. P.; Grieco, L. M.; Foo, T. J. Phys. Chem. B 2008, 112, 16654. https://doi.org/10.1021/jp805784u

Cited by

  1. Ionic liquid-assisted carboxylation of amines by CO2: a mechanistic consideration vol.13, pp.13, 2011, https://doi.org/10.1039/c0cp02482a
  2. Acidic Ionic Liquids vol.116, pp.10, 2016, https://doi.org/10.1021/acs.chemrev.5b00763