DOI QR코드

DOI QR Code

THE LACUNARY STRONG ZWEIER CONVERGENT SEQUENCE SPACES

  • Sengonul, Mehmet (Department of Mathematics, Nevsehir University)
  • Published : 2010.01.31

Abstract

In this paper we introduce and study the lacunary strong Zweier sequence spaces $N_{\theta}^O[Z]$, $N_{\theta}[Z]$ consisting of all sequences x = $(x_k)$ such that (Zx) in the space $N_{\theta}$ and $N_{\theta}^O$ respectively, which is normed. Also, prove that $N_{\theta}^O[Z}$, $N_{\theta}[Z}$, are linearly isomorphic to the space $N_{\theta}^O$ and $N_{\theta}$, respectively. And we study some connections between lacunary strong Zweier sequence and lacunary statistical Zweier convergence sequence.

Keywords

lacunary sequence;Zweier space;statisticial convergence;Banach space;isomorphism

References

  1. J. Boos, Classical and Modern Methods in Summability, Oxford University Press, 2000.
  2. B. Cohuldhary and S. Nanda, Functional Analysis with Applications, Jhon Wiley & Sons Inc, New Delhi.
  3. J. S. Connor, The statistical and strong p-Cesaro convergence spaces, Analysis 8 (1988), 47–63.
  4. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1950), 241–244.
  5. A. R. Freedman, Some Cesaro-type summability spaces, Pasific J. Math. 35 (1981), 293–305.
  6. A. R. Freedman, J. J. Sember, and M. Raphael, Some Cesaro-type summability spaces, Proc. London Math. Soc. 37(1978), no. 3, 508–520. https://doi.org/10.1112/plms/s3-37.3.508
  7. J. A. Fridy, On statistical convergence in Banach spaces, Analysis 5 (1985), 309–313.
  8. T. Salt, On statistically convergent sequences numbers, Math. Slovaca 30 (1980), 139–150.
  9. M. Sengonul, On The Zweier Space, Demonstratio Mathematica, vol. XL, No. 1, pp. 181–186, January 2005.
  10. A. Wilansky, Summability through Functional Analysis, North-Holland Matematics Studies 85 Amsterdam-Newyork-Oxfort, 1984.