DOI QR코드

DOI QR Code

TWO NEW PROOFS OF THE COMPLETE MONOTONICITY OF A FUNCTION INVOLVING THE PSI FUNCTION

  • Guo, Bai-Ni ;
  • Qi, Feng
  • Published : 2010.01.31

Abstract

In the present paper, we give two new proofs for the necessary and sufficient condition $\alpha\leq1$ such that the function $x^{\alpha}[lnx-\psi(x)]$ is completely monotonic on (0,$\infty$).

Keywords

new proof;completely monotonic function;psi function;inequality

References

  1. M. Abramowitz and I. A. Stegun (Eds), Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55 Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1965.
  2. H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), no. 217, 373–389. https://doi.org/10.1090/S0025-5718-97-00807-7
  3. G. D. Anderson, R. W. Barnard, K. C. Richards, M. K. Vamanamurthy, and M. Vuorinen, Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1713–1723. https://doi.org/10.1090/S0002-9947-1995-1264800-3
  4. R. D. Atanassov and U. V. Tsoukrovski, Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulgare Sci. 41 (1988), no. 2, 21–23.
  5. C. Berg, Integral representation of some functions related to the gamma function, Mediterr. J. Math. 1 (2004), no. 4, 433–439. https://doi.org/10.1007/s00009-004-0022-6
  6. Ch.-P. Chen and F. Qi, Logarithmically completely monotonic functions relating to the gamma function, J. Math. Anal. Appl. 321 (2006), no. 1, 405–411. https://doi.org/10.1016/j.jmaa.2005.08.056
  7. L. Gordon, A stochastic approach to the gamma function, Amer. Math. Monthly 101 (1994), no. 9, 858–865. https://doi.org/10.2307/2975134
  8. A. Z. Grinshpan and M. E. H. Ismail, Completely monotonic functions involving the gamma and q-gamma functions, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1153–1160. https://doi.org/10.1090/S0002-9939-05-08050-0
  9. B.-N. Guo, A.-Q. Liu, and F. Qi, Monotonicity and logarithmic convexity of three functions involving exponential function, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 15 (2008), no. 4, 387–392.
  10. B.-N. Guo and F. Qi, Some logarithmically completely monotonic functions related to the gamma function, J. Korean Math. Soc. 47 (2010), to appear.
  11. B.-N. Guo, Y.-J. Zhang, and F. Qi, Refinements and sharpenings of some double inequalities for bounding the gamma function, J. Inequal. Pure Appl. Math. 9 (2008), no. 1, Art. 17, 5 pages; Available online at http://jipam.vu.edu.au/article.php?sid=953.
  12. A.-Q. Liu, G.-F. Li, B.-N. Guo, and F. Qi, Monotonicity and logarithmic concavity of two functions involving exponential function, Internat. J. Math. Ed. Sci. Tech. 39 (2008), no. 5, 686–691. https://doi.org/10.1080/00207390801986841
  13. H. Minc and L. Sathre, Some inequalities involving $(r!)^{1/r}$, Proc. Edinburgh Math. Soc. (2) 14 (1964/1965), 41–46. https://doi.org/10.1017/S0013091500011214
  14. F. Qi, Bounds for the ratio of two gamma functions, RGMIA Res. Rep. Coll. 11 (2008), no. 3, Art. 1; Available online at http://www.staff.vu.edu.au/rgmia/v11n3.asp.
  15. F. Qi, Three classes of logarithmically completely monotonic functions involving gamma and psi functions, Integral Transforms Spec. Funct. 18 (2007), no. 7, 503–509. https://doi.org/10.1080/10652460701358976
  16. F. Qi and Ch.-P. Chen, A complete monotonicity property of the gamma function, J. Math. Anal. Appl. 296 (2004), no. 2, 603–607. https://doi.org/10.1016/j.jmaa.2004.04.026
  17. F. Qi, R.-Q. Cui, Ch.-P. Chen, and B.-N. Guo, Some completely monotonic functions involving polygamma functions and an application, J. Math. Anal. Appl. 310 (2005), no. 1, 303–308. https://doi.org/10.1016/j.jmaa.2005.02.016
  18. F. Qi and B.-N. Guo, Complete monotonicities of functions involving the gamma and digamma functions, RGMIA Res. Rep. Coll. 7 (2004), no. 1, Art. 8, 63–72.
  19. F. Qi, B.-N. Guo, and Ch.-P. Chen, Some completely monotonic functions involving the gamma and polygamma functions, J. Aust. Math. Soc. 80 (2006), no. 1, 81–88. https://doi.org/10.1017/S1446788700011393
  20. D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1941.
  21. Sh.-Q. Zhang, B.-N. Guo, and F. Qi, A concise proof for properties of three functions involving the exponential function, Appl. Math. E-Notes 9 (2009), 177–183.

Cited by

  1. Asymptotic formulas for gamma function with applications vol.270, 2015, https://doi.org/10.1016/j.amc.2015.08.087
  2. On Kendall–Ressel and related distributions vol.81, pp.10, 2011, https://doi.org/10.1016/j.spl.2011.05.009
  3. Some properties of the Catalan–Qi function related to the Catalan numbers vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-2793-1
  4. A Class of Logarithmically Completely Monotonic Functions Associated with a Gamma Function vol.2010, pp.1, 2010, https://doi.org/10.1155/2010/392431
  5. Necessary and sufficient conditions for a class of functions and their reciprocals to be logarithmically completely monotonic vol.2011, pp.1, 2011, https://doi.org/10.1186/1029-242X-2011-36
  6. Complete monotonicity of a function involving the gamma function and applications vol.69, pp.2, 2014, https://doi.org/10.1007/s10998-014-0056-x
  7. Monotonicity and logarithmic convexity relating to the volume of the unit ball vol.7, pp.6, 2013, https://doi.org/10.1007/s11590-012-0488-2
  8. Some uniqueness results for the non-trivially complete monotonicity of a class of functions involving the polygamma and related functions vol.21, pp.11, 2010, https://doi.org/10.1080/10652461003748112
  9. Logarithmically Complete Monotonicity Properties Relating to the Gamma Function vol.2011, 2011, https://doi.org/10.1155/2011/896483
  10. Sharp Inequalities for Polygamma Functions vol.65, pp.1, 2015, https://doi.org/10.1515/ms-2015-0010
  11. Inequalities for Гp function and Gamma function vol.46, pp.3, 2013, https://doi.org/10.1515/dema-2013-0474
  12. Some monotonicity properties and inequalities for the generalized digamma and polygamma functions vol.2018, pp.1, 2018, https://doi.org/10.1186/s13660-018-1844-2