DOI QR코드

DOI QR Code

The Application of Piezoelectric Materials in Smart Structures in China

  • Qiu, Jinhao (Aeronautic Science Key Laboratory for Smart Materials and Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Ji, Hongli (Aeronautic Science Key Laboratory for Smart Materials and Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics)
  • Published : 2010.12.15

Abstract

Piezoelectric materials have become the most attractive functional materials for sensors and actuators in smart structures because they can directly convert mechanical energy to electrical energy and vise versa. They have excellent electromechanical coupling characteristics and excellent frequency response. In this article, the research activities and achievements on the applications of piezoelectric materials in smart structures in China, including vibration control, noise control, energy harvesting, structural health monitoring, and hysteresis control, are introduced. Special attention is given to the introduction of semi-active vibration suppression based on a synchronized switching technique and piezoelectric fibers with metal cores for health monitoring. Such mechanisms are relatively new and possess great potential for future applications in aerospace engineering.

References

  1. Badel, A., Jinhao, Q., and Nakano, T. (2008). A new simple asymmetric hysteresis operator and its application to inverse control of piezoelectric actuators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55, 1086-1094. https://doi.org/10.1109/TUFFC.2008.761
  2. Badel, A., Sebald, G., Guyomar, D., Lallart, M., Lefeuvre, E., Richard, C., and Qiu, J. (2006). Piezoelectric vibration control by synchronized switching on adaptive voltage sources: Towards wideband semi-active damping. Journal of the Acoustical Society of America, 119, 2815-2825. https://doi.org/10.1121/1.2184149
  3. Behrens, S., Fleming, A. J., and Moheimani, S. O. R. (2003). A broadband controller for shunt piezoelectric damping of structural vibration. Smart Materials and Structures, 12, 18-28.
  4. Cao, R., Li, Q., Liu, Y., and Qin, L. (2005). Realization of Preisach model and positioning control on PZT using VB database technique. Yadian Yu Shengguang/Piezoelectrics and Acoustooptics, 27, 449-451.
  5. Chen, G., Huang, X., and Wang, M. (2006). Modeling and control of a piezoelectric microgripper for micro assembly. Gaojishu Tongxin/Chinese High Technology Letters, 16, 1134-1138.
  6. Chen, G., Wang, H., Chen, K., and Muto, K. (2008). The influences of path characteristics on multichannel feedforword active noise control system. Journal of Sound and Vibration, 311, 729-736. https://doi.org/10.1016/j.jsv.2007.09.044
  7. Chen, K. A., Ma, Y. L., and Sun, J. C. (1995). Active control of structure-induced sound. Journal of Vibration and Shock, 14, 57-60 (in Chinese).
  8. Chen, L. X., Cai, G. P., and Pan, J. (2009). Experimental study of delayed feedback control for a flexible plate. Journal of Sound and Vibration, 322, 629-651. https://doi.org/10.1016/j.jsv.2008.11.045
  9. Chen, Y. S., Qiu, J. H., Ji, H. L., and Zhu, K. J. (2010). Tracking control of piezoelectric actuator system using inverse hysteresis model. International Journal of Applied Electromagnetics and Mechanics, 33, 1555-1564.
  10. Corr, L. R. and Clark, W. W. (2003). A novel semi-active multi-modal vibration control law for a piezoceramic actuator. Journal of Vibration and Acoustics, Transactions of the ASME, 125, 214-222. https://doi.org/10.1115/1.1547682
  11. Cui, Y. G., Sun, B. Y., Dong, W. J., and Yang, Z. X. (2004). Study of coordinate transform model for hysteresis nonlinearity in piezoceramic actuator. Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology, 44, 249-254.
  12. Dang, X. and Tan, Y. (2005a). Neural networks dynamic hysteresis model for piezoceramic actuator based on hysteresis operator of first-order differential equation. Physica B: Condensed Matter, 365, 173-184. https://doi.org/10.1016/j.physb.2005.03.046
  13. Dang, X. and Tan, Y. (2005b). Study on neural network modeling for hysteresis behavior of piezoceramic actuator based on gray theory. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 26, 913-916.
  14. Dang, X. J. and Tan, Y. H. (2007). Research on dynamic modeling for piezoceramic actuator based on Gamma filters. Xitong Fangzhen Xuebao / Journal of System Simulation, 19, 2012-2014.
  15. Dong, X. and Meng, G. (2005). Dynamics modeling and active vibration control of cantilever beam with piezoelectrics. Zhendong yu Chongji/Journal of Vibration and Shock, 24, 54-57.
  16. Elliott, S. J. (1994). Active control of structure-borne noise. Journal of Sound and Vibration, 177, 651-673. https://doi.org/10.1006/jsvi.1994.1459
  17. Faiz, A., Guyomar, D., Petit, L., and Buttay, C. (2006). Wave transmission reduction by a piezoelectric semi-passive technique. Sensors and Actuators, A: Physical, 128, 230-237. https://doi.org/10.1016/j.sna.2006.02.021
  18. Fazelzadeh, S. A. and Jafari, S. M. (2008). Active control law design for flutter suppression and gust alleviation of a panel with piezoelectric actuators. Smart Materials and Structures, 17, 853-862.
  19. Fleming, A. J. and Moheimani, S. O. R. (2004). Improved current and charge amplifiers for driving piezoelectric loads, and issues in signal processing design for synthesis of shunt damping circuits. Journal of Intelligent Material Systems and Structures, 15, 77-92. https://doi.org/10.1177/1045389X04039701
  20. Fu, Y. and Zhang, J. (2009). Active control of the nonlinear static and dynamic responses for piezoelectric viscoelastic microplates. Smart Materials and Structures, 18, 1-9.
  21. Fuller, C. R., Elliott, S. J., and Nelson, P. A. (1996). Active Control of Vibration. London: Academic Press.
  22. Gong, D. C., Lu, F. Z., Pan, X. H., and Tang, Z. F. (2007). Precision tracking and experimental optimization of GMA by Preisach inverse compensation. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 15, 1241-1246.
  23. Guo, G. F. and Dang, X. J. (2008). Modeling for piezoceramic actuators based on PI model. Control & Automation, 24, 282-284 (in Chinese).
  24. Guyomar, D. and Badel, A. (2006). Nonlinear semi-passive multimodal vibration damping: An efficient probabilistic approach. Journal of Sound and Vibration, 294, 249-268. https://doi.org/10.1016/j.jsv.2005.11.010
  25. Guyomar, D., Badel, A., Lefeuvre, E., and Richard, C. (2005). Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52, 584-594. https://doi.org/10.1109/TUFFC.2005.1428041
  26. Guyomar, D., Richard, C., and Mohammadi, S. (2007). Semi-passive random vibration control based on statistics. Journal of Sound and Vibration, 307, 818-833. https://doi.org/10.1016/j.jsv.2007.07.008
  27. Hagan, M. T., Demuth, H. B., and Beale, M. H. (1996). Neural Network Design. Boston: PWS Publishing Co.
  28. Hagood, N. W. and von Flotow, A. (1991). Damping of structural vibrations with piezoelectric materials and passive electrical networks. Journal of Sound and Vibration, 146, 243-268. https://doi.org/10.1016/0022-460X(91)90762-9
  29. Hansen, C. H., Qiu, X. J., Petersen, C. D., and Howard, C. Q. (2007). Active noise and vibration control system design considerations. Proceedings of the 8th Conference on Active Noise and Vibration Control Methods, Krakow, Poland. pp. 14-31.
  30. He, X. F., Wen, Z. Y., and Wen, Z. Q. (2009). Modeling and application of piezoelectric vibration-based power generator. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 17, 1436-1441.
  31. Hu, B. and Chen, G. (2006). Study on adaptive inverse control of hysteresis in piezoelectric microgripper. Zhongguo Jixie Gongcheng/China Mechanical Engineering, 17, 798-801.
  32. Hu, H., Georgiou, H. M. S., and Ben-Mrad, R. (2005). Enhancement of tracking ability in piezoceramic actuators subject to dynamic excitation conditions. IEEE/ASME Transactions on Mechatronics, 10, 230-239. https://doi.org/10.1109/TMECH.2005.844705
  33. Hu, H., Xue, H., and Hu, Y. (2007a). A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54, 1177-1187. https://doi.org/10.1109/TUFFC.2007.371
  34. Hu, H., Zhao, C., Feng, S., Hu, Y., and Chen, C. (2008a). Adjusting the resonant frequency of a PVDF bimorph power harvester through a corrugation-shaped harvesting structure. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55, 668-674. https://doi.org/10.1109/TUFFC.2008.691
  35. Hu, Q. and Ma, G. (2006). Spacecraft vibration suppression using variable structure output feedback control and smart materials. Journal of Vibration and Acoustics, Transactions of the ASME, 128, 221-230. https://doi.org/10.1115/1.2159039
  36. Hu, Y., Xue, H., and Hu, H. (2007b). A piezoelectric power harvester with adjustable frequency through axial preloads. Smart Materials and Structures, 16, 1961-1966. https://doi.org/10.1088/0964-1726/16/5/054
  37. Hu, Y., Xue, H., Hu, T., and Hu, H. (2008b). Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55, 148-159. https://doi.org/10.1109/TUFFC.2008.624
  38. Huang, P., Chen, J. J., Wang, X. B., Xu, Y. L., and Gao, W. (2005). Study on model predictive vibration control of intelligent plate. Mechanical Science and Technology, 24, 393-396 (in Chinese).
  39. Ji, H., Qio, J., Badel, A., and Zhu, K. (2009a). Semi-active vibration control of a composite beam using an adaptive SSDV approach. Journal of Intelligent Material Systems and Structures, 20, 401-412. https://doi.org/10.1177/1045389X08095182
  40. Ji, H., Qiu, J., Badel, A., Chen, Y., and Zhu, K. (2009b). Semi-active vibration control of a composite beam by adaptive synchronized switching on voltage sources based on LMS algorithm. Journal of Intelligent Material Systems and Structures, 20, 939-947. https://doi.org/10.1177/1045389X08099967
  41. Ji, H., Qiu, J., Cheng, J., and Inman, D. (2010a). Application of a negative capacitance circuit in synchronized switch damping techniques for vibration suppression, San Diego, CA (DOI: 10.1117/12.847078).
  42. Ji, H., Qiu, J., Zhu, K., and Badel, A. (2010b). Two-mode vibration control of a beam using nonlinear synchronized switching damping based on the maximization of converted energy. Journal of Sound and Vibration, 329, 2751-2767. https://doi.org/10.1016/j.jsv.2010.01.012
  43. Ji, H., Qiu, J., Zhu, K., Chen, Y., and Badel, A. (2009c). Multimodal vibration control using a synchronized switch based on a displacement switching threshold. Smart Materials and Structures, 18, 1-8.
  44. Ji, H. L., Ma, Y., Qiu, J. H., Jiang, H., Shen, H., and Zhu, K. J. (2008). Optimal design of high efficiency piezoelectric energy harvester. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 16, 2346-2351.
  45. Jia, H., Wu, Y., Xuan, M., and Wang, L. (2002). New nonlinear mathematical model for a PZT actuator. Zhongguo Jixie Gongcheng/China Mechanical Engineering, 13, 929-932.
  46. Jiang, H., Ji, H., Qiu, J., and Chen, Y. (2010). A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57, 1200-1210. https://doi.org/10.1109/TUFFC.2010.1533
  47. Jin, G., Liu, Z., Du, J., and Yang, T. (2009). Experimental study on active structural acoustic control based on distributed structural volume velocity sensors. Shengxue Xuebao/Acta Acustica, 34, 342-349.
  48. Kan, J. W., Tang, K. H., Wang, S. Y., Yang, Z. G., Jia, J., and Zeng, P. (2008). Modeling and simulation of piezoelectric cantilever generators. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 16, 71-75.
  49. Knyazev, A. S. and Tartakovskii, B. D. (1967). A basement of radiation from flexurally vibrating plates by means of active local vibration dampers. Soviet Physics Acoustics, 13, 115-116.
  50. Lallart, M., Garbuio, L., Petit, L., Richard, C., and Guyomar, D. (2008). Double synchronized switch harvesting (DSSH): A new energy harvesting scheme for efficient energy extraction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55, 2119-2130. https://doi.org/10.1109/TUFFC.912
  51. Lallart, M., Harari, S., Petit, L., Guyomar, D., Richard, T., Richard, C., and Gaudiller, L. (2009). Blind switch damping (BSD): A self-adaptive semi-active damping technique. Journal of Sound and Vibration, 328, 29-41. https://doi.org/10.1016/j.jsv.2009.07.030
  52. Lefeuvre, E., Badel, A., Petit, L., Richard, C., and Guyomar, D. (2006a). Semi-passive piezoelectric structural damping by synchronized switching on voltage sources. Journal of Intelligent Material Systems and Structures, 17, 653-660. https://doi.org/10.1177/1045389X06055810
  53. Lefeuvre, E., Badel, A., Richard, C., Petit, L., and Guyomar, D. (2006b). A comparison between several vibration-powered piezoelectric generators for standalone systems. Sensors and Actuators, A: Physical, 126, 405-416. https://doi.org/10.1016/j.sna.2005.10.043
  54. Lemistre, M. and Balageas, D. (2001). Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing. Smart Materials and Structures, 10, 504-511. https://doi.org/10.1088/0964-1726/10/3/312
  55. Li, D. S. and Cheng, L. (2010). The design of synthesized structural acoustic sensors for active control of interior noise with experimental validation. Journal of Sound and Vibration, 329, 123-139. https://doi.org/10.1016/j.jsv.2009.09.005
  56. Li, F. and Zhao, J. H. (2007). Discrete methods based on first order reversal curves to identify preisach model of smart materials. Chinese Journal of Aeronautics, 20, 157-161. https://doi.org/10.1016/S1000-9361(07)60025-9
  57. Li, L., Liu, X. D., Hou, C. Z., and Wang, W. (2008). Mixed Preisach hysteresis model and its properties. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 16, 279-284.
  58. Li, L., Liu, X. D., Wang, W., and Hou, C. Z. (2007). Generalized nonlinear Preisach model for hysteresis nonlinearity of piezoceramic actuator and its numerical implementation. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 15, 706-712.
  59. Li, Y. N., Li, W., Ren, P., Guo, T., Yan, Z. D., Fu, X., and Hu, X. T. (2009). Resonance frequency and power output of piezoelectric microcantilever energy harvesting system. Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 42, 373-376.
  60. Lin, F. J., Shieh, H. J., Huang, P. K., and Teng, L. T. (2006). Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53, 1649-1660. https://doi.org/10.1109/TUFFC.2006.1678193
  61. Lin, Q. and Ermanni, P. (2004). Semi-active damping of a clamped plate using PZT. International Journal of Solids and Structures, 41, 1741-1752. https://doi.org/10.1016/j.ijsolstr.2003.11.023
  62. Liu, J., Qiu, J. H., Chang, W. J., Ji, H. L., and Zhu, K. J. (2010). Metal core piezoelectric ceramic fiber rosettes for acousto-ultrasonic source localization in plate structures. International Journal of Applied Electromagnetics and Mechanics, 33, 865-873.
  63. Liu, V. T., Lin, C. L., Huang, H. C., and Jian, Z. J. (2006a). A novel micro-positioning controller for piezoelectric actuators. Intelligent Control and Automation, 344, 450-455. https://doi.org/10.1007/978-3-540-37256-1_52
  64. Liu, X. D., Xiu, C. B., Liu, C., and Li, L. (2006b). Hysteresis model of piezoceramics based on chaotic neural networks. Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 26, 135-138.
  65. Lueg, P. (1936). Process of silencing sound oscillations. U.S. Patent No. 2043416.
  66. Makihara, K., Onoda, J., and Minesugi, K. (2006). Behavior of piezoelectric transducer on energy-recycling semiactive vibration suppression. AIAA Journal, 44, 411-413. https://doi.org/10.2514/1.9811
  67. Makihara, K., Onoda, J., and Minesugi, K. (2007). A selfsensing method for switching vibration suppression with a piezoelectric actuator. Smart Materials and Structures, 16, 455-461. https://doi.org/10.1088/0964-1726/16/2/025
  68. Mao, Y. Q., Fu, Y. M., (2010). Nonlinear dynamic response and active vibration control for piezoelectric functionally graded plate. Journal of Sound and Vibration, 329, 2015-2028. https://doi.org/10.1016/j.jsv.2010.01.005
  69. Onoda, J., Makihara, K., and Minesugi, K. (2003). Energyrecycling semi-active method for vibration suppression with piezoelectric transducers. AIAA Journal, 41, 711-719. https://doi.org/10.2514/2.2002
  70. Park, C. H. and Baz, A. (2005). Vibration control of beams with negative capacitive shunting of interdigital electrode piezoceramics. JVC/Journal of Vibration and Control, 11, 331-346. https://doi.org/10.1177/107754605040949
  71. Park, C. H. and Park, H. C. (2003). Multiple-mode structural vibration control using negative capacitive shunt damping. KSME International Journal, 17, 1650-1658.
  72. Qin, Y. X. and Hu, D. J. (2004). Nonlinear modeling for piezoelectric actuators. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 38, 1334-1336.
  73. Qiu, J., Hongli, J., Matsuta, K., and Shen, X. (2008). Active noise isolation of a plate structure without using acoustic sensors. Journal of Intelligent Material Systems and Structures, 19, 325-332. https://doi.org/10.1177/1045389X07083181
  74. Qiu, J., Ji, H., and Zhu, K. (2009a). Semi-active vibration control using piezoelectric actuators in smart structures. Frontiers of Mechanical Engineering in China, 4, 242-251.
  75. Qiu, J., Jiang, H., Ji, H., and Zhu, K. (2009b). Comparison between four piezoelectric energy harvesting circuits. Frontiers of Mechanical Engineering in China, 4, 153-159. https://doi.org/10.1007/s11465-009-0031-z
  76. Qiu, J., Tani, J., Yamada, N., and Takahashi, H. (2003). Fabrication of piezoelectric fibers with metal core. Proceedings of SPIE Conference on Smart Structures and Materials, San Diego, CA. pp. 475-483.
  77. Qiu, X. J. and Hansen, H. C. (2003). Applying effort constraints on adaptive feedforward control using the active set method. Journal of Sound and Vibration, 260, 757-762. https://doi.org/10.1016/S0022-460X(02)01105-7
  78. Qiu, X. J., Li, N. G., and Hansen, C. H. (2006). The implementation of delayless subband active noise control algorithm. The 6th International Symposium on Active Noise and Vibration Control (ACTIVE 2006), Adelaide, Australia. pp. 1-10.
  79. Qiu, X. J. and Sha, J. Z. (1996). The development of active structural acoustic incidence control. Progress in Physics, 16, 533-543 (in Chinese).
  80. Qiu, Z. c., Han, J. D., Zhang, X. M., Wang, Y. C., and Wu, Z. W. (2009c). Active vibration control of a flexible beam using a non-collocated acceleration sensor and piezoelectric patch actuator. Journal of Sound and Vibration, 326, 438-455. https://doi.org/10.1016/j.jsv.2009.05.034
  81. Qiu, Z. C., Zhang, X. M., Wu, H. X., and Zhang, H. H. (2007). Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate. Journal of Sound and Vibration, 301, 521-543. https://doi.org/10.1016/j.jsv.2006.10.018
  82. Qu, W. Z., Yao, Z. H., and Zhang, Z. J. (2005). Adaptive fuzzy inverse control of piezoelectric actuator with hysteresis and creep. Mechanical Science and Technology, 24, 1230-1232 (in Chinese).
  83. Richard, C., Guyomar, D., Audigier, D., and Bassaler, H. (2000). Enhanced semi passive damping using continuous switching of a piezoelectric device on an inductor. Proceedings of SPIE International Symposium on Smart Structures and Materials: Damping and Isolation, Newport Beach, CA. pp. 288-299.
  84. Sato, H., Sekiya, T., and Nagamine, M. (2004). Design of the metal-core piezoelectric fiber. Proceedings of SPIE Conference on Smart Structures and Materials, San Diego, CA. pp. 97-103.
  85. Sha, J. Z., Sun, G. R., Cao, S. X., and Wu, Q. X. (1981). Active sound absorber in ducts. Acta Acoustic, 3, 137-141 (in Chinese).
  86. Shen, H., Qiu, J., Ji, H., Zhu, K., and Balsi, M. (2010a). Enhanced synchronized switch harvesting: a new energy harvesting scheme for efficient energy extraction. Smart Materials and Structures, 19, 115017. https://doi.org/10.1088/0964-1726/19/11/115017
  87. Shen, H., Qiu, J., Ji, H., Zhu, K., Balsi, M., Giorgio, I., and Dell’Isola, F. (2010b). A low-power circuit for piezoelectric vibration control by synchronized switching on voltage sources. Sensors and Actuators, A: Physical, 161, 245-255. https://doi.org/10.1016/j.sna.2010.04.012
  88. Shen, H. S. and Liew, K. M. (2004). Postbuckling of axially loaded functionally graded cylindrical panels with piezoelectric actuators in thermal environments. Journal of Engineering Mechanics, 130, 982-995. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:8(982)
  89. Shen, X. C., Fang, H. B., Wang, Y. J., and Liu, J. Q. (2008). Research and test of the circuit for MEMS-based piezoelectric micro energy harvesting device. Chinese Journal of Sensors and Actuators, 21, 692-694.
  90. Sheng, G. G. and Wang, X. (2009). Active control of functionally graded laminated cylindrical shells. Composite Structures, 90, 448-457. https://doi.org/10.1016/j.compstruct.2009.04.017
  91. Su, M. Y., Tan, Y. H., and Yang, X. M. (2004). The modeling and the inverse control of systems with hysteresis. Journal of Gulin University of Electronic Technology, 24, 1-4 (in Chinese).
  92. Tani, J., Takagi, T., and Qiu, J. (1998). Intelligent material systems: application of functional materials. Applied Mechanics Reviews, 51, 505-521. https://doi.org/10.1115/1.3099019
  93. Taylor, G. W., Burns, J. R., Kammann, S. M., Powers, W. B., and Welsh, T. R. (2001). The energy harvesting Eel: A small subsurface ocean/river power generator. IEEE Journal of Oceanic Engineering, 26, 539-547. https://doi.org/10.1109/48.972090
  94. Timoshenko, S. and Goodier, J. N. (1969). Theory of Elasticity. 3rd ed. New York: McGraw-Hill.
  95. Tu, Y. and Fuller, C. R. (2000). Multiple reference feedforward active noise control Part II: reference preprocessing and experimental results. Journal of Sound and Vibration, 233, 761-774. https://doi.org/10.1006/jsvi.1998.2076
  96. Wang, D., Zhu, H., Shen, D., and Ge, D. (2009). Health monitoring of reinforced concrete structures based on PZT admittance signal. 2nd International Conference on Smart Materials and Nanotechnology in Engineering, Weihai, China. pp. 74931H-1-7.
  97. Wang, Q, and Yuan, S. (2009). Baseline-free imaging method based on new pzt sensor arrangements. Journal of Intelligent Material Systems and Structures, 20, 1663-1673. https://doi.org/10.1177/1045389X09105232
  98. Wang, X. and Mao, Y. (2008). Adaptive sliding model control for hysteresis system based on Prandtl-Ishlinskii model. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 44, 171-178.
  99. Wang, Y., Zhang, X. H., Wu, G., and Hu, S. S. (2003). Mathematical model of self-repairing flight control. Transactions of Nanjing University of Aeronautics & Astronautics, 20, 178-183.
  100. Wei, Y. (2004). Study on non-linear model of piezoelectric actuator and accurate positioning control strategy. Zhongguo Jixie Gongcheng/China Mechanical Engineering, 15, 565-568.
  101. Wei, Y., Lu, Y., and Chen, Z. (2004). Research on openloop precision positioning control of a microdisplacement platform based on piezoelectric actuators. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 40, 81-85.
  102. Wei, Y. D. and Tao, H. F. (2004). Study the Preisach model of hysteresis in piezoelectric actuator. Yadian Yu Shengguang/Piezoelectrics and Acoustooptics, 26, 364-367.
  103. Wu, J., Jiang, Z., and Zhu, L. (2009). The decoupling of the active structural acoustic control based on the theory of radiation modes. Shengxue Xuebao/Acta Acustica, 34, 453-461.
  104. Wu, S. Y. (2000). Broadband piezoelectric shunts for structural vibration control. Patent No. 6,075,309.
  105. Wu, X. M., Fang, H. J., and Lin, J. H. (2008). MEMS piezo cantilever for vibration energy harvesting. Journal of Functional Materials and Devices, 14, 467-471.
  106. Xu, D., Cheng, X., Huang, S., and Jiang, M. (2010). Identifying technology for structural damage based on the impedance analysis of piezoelectric sensor. Construction and Building Materials, 24, 2522-2527. https://doi.org/10.1016/j.conbuildmat.2010.06.004
  107. Xu, Y. D., Yuan, S. F., and Peng, G. (2004). Study on twodimensional damage location in structure based on active lamb wave detection technique. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 25, 476-479.
  108. Xue, H., Hu, Y., and Wang, Q. M. (2008). Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55, 2104-2108. https://doi.org/10.1109/TUFFC.903
  109. Yan, G. and Zhou, L. (2009). Impact load identification of composite structure using genetic algorithms. Journal of Sound and Vibration, 319, 869-884. https://doi.org/10.1016/j.jsv.2008.06.051
  110. Yan, W., Cai, J. B., and Chen, W. Q. (2009). Monitoring interfacial defects in a composite beam using impedance signatures. Journal of Sound and Vibration, 326, 340-352. https://doi.org/10.1016/j.jsv.2009.04.030
  111. Yan, W., Cai, J. B., and Chen, W. Q. (2011). An electromechanical impedance model of a cracked composite beam with adhesively bonded piezoelectric patches. Journal of Sound and Vibration, 330, 287-307. https://doi.org/10.1016/j.jsv.2010.08.013
  112. Yan, W., Lim, C. W., Cai, J. B., and Chen, W. Q. (2007). An electromechanical impedance approach for quantitative damage detection in Timoshenko beams with piezoelectric patches. Smart Materials and Structures, 16, 1390-1400. https://doi.org/10.1088/0964-1726/16/4/054
  113. Yang, C. H. and Chang, K. M. (2006). Adaptive neural network control for piezoelectric hysteresis compensation in a positioning system. IEEE International Symposium on Industrial Electronics, Montreal, QC. pp. 829-834.
  114. Yu, J., Zhu, H., and Huang, M. (2010). Numerical study of structure health monitoring using surface-bonded and embedded PZT transducers. International Conference on Mechanic Automation and Control Engineering, Wuhan, China. pp. 895-898.
  115. Yuan, J. B., Xie, T., and Chen, W. S. (2008). Energy harvesting with piezoelectric cantilever. IEEE International Ultrasonics Symposium, Beijing, China. pp. 1397-1400.
  116. Zhang, B., Wang, J. W., Chen, K., and Li, J. (2002). Study on the hysteresis property of piezoelectric actuator. China Mechanical Engineering, 13, 446-449 (in Chinese).
  117. Zhang, F. and Wang, C. (2005). Piezoelectric wafer model and its application in structural health monitoring. Chinese Journal of Sensors and Actuators, 18, 215-220.
  118. Zhang, M. H., Li, H., and Ou, J. P. (2007). PZT active health monitoring for fatigue accumulative damage of concrete beam containing nano-particles for pavement. Fundamental Problems of Optoelectronics and Microelectronics III, Harbin, China. pp. 65952B1-12.
  119. Zhang, W., Qiu, J., and Tani, J. (2004). Robust vibration control of a plate using self-sensing actuators of piezoelectric patches. Journal of Intelligent Material Systems and Structures, 15, 923-931. https://doi.org/10.1177/1045389X04045153
  120. Zhang, X. and Erdman, A. G. (2006). Optimal placement of piezoelectric sensors and actuators for controlled flexible linkage mechanisms. Journal of Vibration and Acoustics, Transactions of the ASME, 128, 256-260. https://doi.org/10.1115/1.2159043
  121. Zhang, X., Lu, J., and Shen, Y. (2003). Active noise control of flexible linkage mechanism with piezoelectric actuators. Computers and Structures, 81, 2045-2051. https://doi.org/10.1016/S0045-7949(03)00230-X
  122. Zhang, Y. J. and San, H. S. (2009). MEMS hybrid powergenerator from vibration energy. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 17, 1262-1266.
  123. Zhao, T. and Tan, Y. H. (2004). Identification for a class of hysteretic non-lineer model based on coordinate transformation and affine mapping. Control Engineering of China, 11, 75-78 (in Chinese).
  124. Zhao, X. and Tan, Y. (2006). Neural network based identification of Preisach-type hysteresis in piezoelectric actuator using hysteretic operator. Sensors and Actuators, A: Physical, 126, 306-311.
  125. Zhao, X., Yuan, S., Yu, Z., Ye, W., and Cao, J. (2008). Designing strategy for multi-agent system based large structural health monitoring. Expert Systems with Applications, 34, 1154-1168. https://doi.org/10.1016/j.eswa.2006.12.022
  126. Zhao, X., Yuan, S., Zhou, H., Sun, H., and Qiu, L. (2009). An evaluation on the multi-agent system based structural health monitoring for large scale structures. Expert Systems with Applications, 36, 4900-4914. https://doi.org/10.1016/j.eswa.2008.05.056
  127. Zhao, Y. (2010). Vibration suppression of a quadrilateral plate using hybrid piezoelectric circuits. JVC/Journal of Vibration and Control, 16, 701-720. https://doi.org/10.1177/1077546309106529
  128. Zheng, K., Yan, S., Wen, S., and Ye, Q. (2003). Hysteresis compensation in piezoelectric stack actuators. Qinghua Daxue Xuebao/Journal of Tsinghua University, 43, 628-631.
  129. Zhou, M. L., Tian, Y. T., Gao, W., and Yang, Z. G. (2007). High precise control method for a new type of piezoelectric electro-hydraulic servo valve. Journal of Central South University of Technology (English Edition), 14, 832-837. https://doi.org/10.1007/s11771-007-0158-1
  130. Zhu, H. P., Wang, D. S., and Zhang, J. B. (2008). Theory and application of structure damage detection based on piezoelectric impedance technique. Gongcheng Lixue/Engineering Mechanics, 25, 34-43.

Cited by

  1. Modeling hysteresis and creep behavior of macrofiber composite–based piezoelectric bimorph actuator vol.24, pp.3, 2013, https://doi.org/10.1177/1045389X12460337
  2. Active control of sound transmission through a stiffened panel using a hybrid control strategy vol.23, pp.7, 2012, https://doi.org/10.1177/1045389X12439638
  3. A Fundamental Study for Design of Electric Energy Harvesting Device using PZT on the Road vol.13, pp.4, 2011, https://doi.org/10.7855/IJHE.2011.13.4.159
  4. A Novel Application of Minimax LQG Control Technique for High-speed Spiral Imaging vol.20, pp.4, 2017, https://doi.org/10.1002/asjc.1691
  5. -carboranes vol.6, pp.32, 2018, https://doi.org/10.1039/C8TC02266F