Neuroprotective Effects of Neutral Pharmacopuncture for Blood Stasis and Tangguisusangami-tang(dangguixusanjiawei-tang ) in the Experimental Traumatic Brain Injury Rats

중성어혈(中性瘀血) 약침(藥鍼)과 당귀수산가미탕(當歸鬚散加味湯)이 외상성 뇌손상 흰쥐의 신경보호에 미치는 영향

  • Jong, Il-Moon (Dept. of Oriental Rehabilitation Medicine, College of Oriental Medicine, Dong-Shin University) ;
  • Choi, Jin-Bong (Dept. of Oriental Rehabilitation Medicine, College of Oriental Medicine, Dong-Shin University)
  • 정일문 (동신대학교 한의과대학 한방재활의학과교실) ;
  • 최진봉 (동신대학교 한의과대학 한방재활의학과교실)
  • Received : 2010.01.06
  • Accepted : 2010.01.16
  • Published : 2010.01.31

Abstract

Objectives : This study was designed to evaluate neuroprotective effects of Neutral Pharmacopuncture for Blood Stasis(NPBS) into SP10 and Tangguisusangami-tang (dangguixusanjiawei-tang)(TGT) in the experimental Traumatic Brain Injury(TBI)rats. Methods : Male rats were divided into 4 groups. Group I was no treatment after TBI. Group II was treatment with NPBS into SP10 after TBI. Group III was treatment with TGT after TBI. Group IV was NPBS into SP10 and TGT after TBI. The author carried out neurological motor behavioral, histological assessment test. Results : 1. In neurological motor behavior tests, motor and cognitive function recovery was significantly increased in the Group II, III, IV. Also Group IV was increased as compared with Group II, III. 2. In BAX expression, according to priority Group IV, III, II, I were decresed in 7 and 14 days later. Especially Group IV was significantly decreased in 14 days later. 3. In BCL-2 expression, Group IV was increased slightly in 7 days later. Most incresed expression was experimented in the Group IV in 14 days later. 4. In TUNEL expression, IV was decreased as compared with each Group I, II, III in 7 days later. Group IV, III were decreased as compared with each Group I, II, III in 14 days later. Conclusions : According to the results, NPBS and TGT can inhibit apoptosis of cells after TBI in rats by contol of BAX and BCL-2, TUNEL expression. And also can help neurological motor behavioral function.

References

  1. Umpllred DA. Neurological rehabilitation. 3rd. Chicago:Mosby-Yeat Book. Inc. 1995:978.
  2. Povlishock JT, Buki A, Koiziumi H, Stone J, Okonkwo DO. Initiating mechanism involved in the pathobiology of traumatically induced axonal injury and interventions targeted at blunting their progression. Acta Neurochair Suppl. 1999;73:15-20.
  3. Hausmann R, Biermann T, Wiest I, Tubel J, Betz P. Neuronal apoptosis following human brain injury. IntJ Legal Med. 2004;118(1):32-6. https://doi.org/10.1007/s00414-003-0413-4
  4. 지용철. 흰쥐의 실험적 외상성 뇌손상에서 Ginseng Total Saponins의 신경보호 작용. 중앙대학교 대학원 박사학위논문. 2005.
  5. 김정길. 홍삼투여가 흰쥐 외상성 뇌손상의 Bax 및 Bcl-2 발현에 미치는 영향. 경희대학교 대학원 석사학위논문. 2007.
  6. 나건호, 윤대환, 나창수, 채우석. 풍지(GB20)의 천마약침이 Intraluminal Filament 삽입술에 의하여 유발된 백서(白鼠)의 뇌허혈에 미치는 영향. 대한침구학회지. 2008;25(1):1-14.
  7. 한상균, 이병렬. 당귀약침의 혈해 자입이 Intraluminal Filament 삽입술에 의해 유발된 백서의 허혈성 뇌손상에 미치는 영향. 대한침구학회지. 2004;21(2):1-20.
  8. 안영기. 경혈학총서. 서울:성보사. 1995:236-7.
  9. 임종국. 침구치료학. 서울:집문당. 1983:320.
  10. 백동진. 신천임상침법. 서울:정담. 2004:242-3.
  11. 대한약침학회. 약침요법총론. 서울:대한약침학회. 1999:313.
  12. 李梴. 의학입문. 서울:대성출판사. 1981:393.
  13. 윤용갑. 동의방제와 처방해설. 서울:의성당. 2007:679.
  14. 김태색, 안규석. 당귀수산 및 도담탕이 Endotoxin으로 수발된 혈전증에 미치는 영향. 동의생리병리학회. 1988;3(0):91-8.
  15. 여남회, 이학용. 당귀수산 투여가 지구성 운동능력회복과 탈수소 효소 농도에 미치는 영향. 한국운동생리학회. 2002;11(1):17-24.
  16. 신민교. 임상본초학. 서울:영림사. 2000:338, 531, 721.
  17. 황도연, 신민교. 신편방약합편. 서울:영림사. 2002:322-3.
  18. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg. 1994;80(2):291-300. https://doi.org/10.3171/jns.1994.80.2.0291
  19. Hamm RJ, Pike BR, O`dell DM, Lyeth BG, Jenkins LW. The rotarod test: An evqluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma. 1994;11(2):187-96. https://doi.org/10.1089/neu.1994.11.187
  20. Feeney DM, Gonzalez A, Law WA. Amphetamine, haloperidol and experience interact to affect rate of recovery after motor cortex injury. Science. 1982;218:855-7.
  21. Goldstein LB, Davis JN. Beam-walking in rats: Studies towards developing an animal model of functional recovery after brain injury. J Neurosci Methods. 1990;31:101-7. https://doi.org/10.1016/0165-0270(90)90154-8
  22. 최석민, 석종식, 민병국, 황성남, 김영백, 김재현. 개량형 피질 충격 모델의 개발. 대한신경외과학회지. 2002;32(5):458-62.
  23. Royo NC, Schouten JW, Fulp CT, Shimizu S, Marklund N, Graham DI, McIntosh TK. From cell death to neuronal regeneration: building a new brain after traumatic brain injury. J Neuropathol Exp Neurol. 2003;62:801-11. https://doi.org/10.1093/jnen/62.8.801
  24. Stelmasiak Z, Konopa AD, Rejdak K. Head trauma and neuroprotection. Med Sci Monit. 2000;6:426-32.
  25. Chrobak JJ, Hanin I, Walsh TJ. AF64A(ethycholine aziridinum ion), a cholinergic neuortoxic, selectively impairs working memory in a multiple component T-maze task. Brain Research. 1987;414:15-21. https://doi.org/10.1016/0006-8993(87)91322-9
  26. Halliwell B, Gutteridege JMC. Oxygen radicals and the nervous system. Trensd Neurosci. 1995;8:22-6.
  27. Choi DW. Glutamate neurotoxicity and disease of the nervous system. Neuron. 1988;1:623-34. https://doi.org/10.1016/0896-6273(88)90162-6
  28. Simon R, Swan J, Griffith T, Meldrum B. Blockade of N-methy-D-asperate receptors may protect against ischemic damage in the brain. Science. 1984;247:571-4.
  29. Iadecola C. Dark and bright sides of nitric oxide in ischemia brain injury. Trends Neurosci. 1997;20:132-9. https://doi.org/10.1016/S0166-2236(96)10074-6
  30. Schielke GP, Yang GY, Shivers BD, Betz AL. Reduced ischemia brain injury inInterleukin-1 ${\beta}$ converting enzyme-deficient mice. J Cere Blood Flow Metabol. 1988;18:180-5.
  31. Runnerstam M, Bao F, Huang Y, Shi J, Gutierrez E, Hamberger A, Hansson H, Viano D, Haglid K. A new model for diffuse brain injury by rotational acceleration: II. Effect on extracellular glutamate, Intracranial pressure and neuronal apoptosis. J Neurotrauma. 2001;18:259-73. https://doi.org/10.1089/08977150151070892
  32. Ng I, Yeo TT, Tang WY, Soong R, Ng PY, Smith DR. Apoptosis occurs after cerebral contusions in humans. Neurosurger. 2000;46:949-6.
  33. Colicos MA, Dash PK. Apoptotic morphology of dentate gyrus granule cells following experimental cortical impact injury in rats: possible role in spatial memory deficits. Brain Res. 1996;739:120-31. https://doi.org/10.1016/S0006-8993(96)00824-4
  34. Kaya SS. Mahmood A, Li Y, Yavuz E, Goksel M, Chopp M. Apoptosis and expression of p53 response proteins and cyclin D1 after cortical impact in rat brain. Brain Res. 1999;818:23-33. https://doi.org/10.1016/S0006-8993(98)01204-9
  35. Faden AI. Neuroprotection and traumatic brain injury: The search continues. Arch Neurol. 2001;58:1553-5. https://doi.org/10.1001/archneur.58.10.1553
  36. 허준. 동의보감. 서울:법인문화사. 1992:1518-9.
  37. 대한약침학회. 약침요법 시술지침서. 서울:대한약침학회. 2000:161-2, 284, 313.
  38. 대한약침학회편역. 약침제제와 임상응용(1), 서울:대한약침학회. 1997:1-5.
  39. Nicholson DW. Mechanisms of apoptotic control. Nature. 2000;407, 810-6 https://doi.org/10.1038/35037747
  40. Gillardon F, Wickert H, Zimmermann M, Up-regulation of Bax and down-regulation of Bcl-2 is associated with kainate-induced apoptosis in mouse brain. Neurosci Lett. 1995;192:85-8. https://doi.org/10.1016/0304-3940(95)11619-8
  41. Hara A, Iwai T, Niwa M. Immunohistochemical detection of BAX and BCL-2 proteins in gerbil hippocampus following transient forebrain ischemia. Brain Res. 1996;711:249-53. https://doi.org/10.1016/0006-8993(95)01436-5
  42. Reed JC. Mini-Review: Cellular mechanisms of disease series. J Cell Biol. 1994;124:1-6. https://doi.org/10.1083/jcb.124.1.1
  43. Deveraux QL, Schendel SL, Reed JC. Antiapoptotic proteins. The Bcl-2 and inhibitor of apoptosis protein families. Cardiol Clin. 2001;19:57-74. https://doi.org/10.1016/S0733-8651(05)70195-8