A DECOMPOSITION INTO ATOMS OF TENT SPACES ASSOCIATED WITH GENERAL APPROACH REGIONS

CHOON-SERK SUH*

Abstract. We first introduce a space of homogeneous type X, and develop the theory of the tent spaces on the generalized upper half-space $X \times (0, \infty)$. The goal of this paper is to study that every element of the tent spaces $T^p_\Omega(X \times (0, \infty), 0 < p \leq 1)$ can be decomposed into elementary particles which are called "atoms."

1. Introduction

The theory of the tent spaces on the upper half-space \mathbb{R}^{n+1}_+ was introduced from the work of R. R. Coifman, Y. Meyer and E. M. Stein [1]. In this paper we study the theory of the tent spaces on the generalized upper half-space $X \times (0, \infty)$, where X is a space of homogeneous type.

We begin by introducing the notion of a space of homogeneous type [2]: Let X be a topological space endowed with Borel measure μ. Assume that d is a pseudo-metric on X, that is, a nonnegative function defined on $X \times X$ satisfying

1. $d(x, x) = 0; d(x, y) > 0$ if $x \neq y$,
2. $d(x, y) = d(y, x)$, and
3. $d(x, z) \leq K(d(x, y) + d(y, z))$, where K is some fixed constant.

Assume further that

(a) the balls $B(x, \rho) = \{y \in X : d(x, y) < \rho\}, \rho > 0$, form a basis of open neighborhoods at $x \in X$,
and that μ satisfies the doubling property:

(b) $0 < \mu(B(x, 2\rho)) \leq A\mu(B(x, \rho)) < \infty$, where A is some fixed constant.

Then we call X a space of homogeneous type.

*Received March 22, 2010; Accepted August 12, 2010.
2010 Mathematics Subject Classification: Primary 42B25.
Key words and phrases: space of homogeneous type, tent space, atom, global γ-density.
Property (iii) will be referred to as the “triangle inequality.” Note that property (b) implies that for every $C > 0$ there is a constant $A_C < \infty$ such that
\[\mu(B(x, C\rho)) \leq A_C \mu(B(x, \rho)) \]
for all $x \in X$ and $\rho > 0$.

Note that the volume of balls will be proportional to a fixed power of the radius. Thus assume there are a $\alpha \in \mathbb{R}$ and constants C_1 and C_2 such that
\[C_1 \rho^\alpha \leq \mu(B(x, \rho)) \leq C_2 \rho^\alpha. \]
We will denote $\mu(B(x, \rho)) \approx \rho^\alpha$ for the simplicity of the notation.

Now consider the space $X \times (0, \infty)$, which is a kind of generalized upper half-space over X. Suppose that there is a given set $\Omega_x \subset X \times (0, \infty)$ for each $x \in X$. Let Ω denote the family $\{\Omega_x\}_{x \in X}$. Thus at each $x \in X$, Ω determines a collection of balls, namely, $\{B(y, t) : (y, t) \in \Omega_x\}$.

For a measurable function f defined on $X \times (0, \infty)$, and real number α, we define an area function $S_{\Omega, \alpha}(f)$ of f, with respect to Ω, as
\[
S_{\Omega, \alpha}(f)(x) = \left(\int_{\Omega_x} |f(y, t)|^2 \frac{d\mu(y)dt}{t^{\alpha+1}} \right)^{1/2}
\]
for $x \in X$. Throughout this paper we will always assume that Ω is chosen so that $S_{\Omega, \alpha}(f)$ is a measurable function on X, and that $\Omega = \{\Omega_x\}_{x \in X}$ is a symmetric family, that is, if $x \in \Omega_y(t)$, then $y \in \Omega_x(t)$, where $\Omega_x(t) = \{y \in X : (y, t) \in \Omega_x\}$.

For any set $E \subset X$, the tent over E, with respect to Ω, is the set
\[
\hat{E}_\Omega = (X \times (0, \infty)) \setminus \bigcup_{x \not\in E} \Omega_x.
\]

The tent space T^p_{Ω} is defined as the space of functions f on $X \times (0, \infty)$, so that $S_{\Omega, \alpha}(f) \in L^p(d\mu)$, $0 < p < \infty$, and set
\[
||f||_{T^p_{\Omega}} = ||S_{\Omega, \alpha}(f)||_{L^p(d\mu)}.
\]

For $0 < p \leq 1$, a function a, supported in B_Ω for some ball B in X, is said to be an (Ω, p)-atom if
\[
\int_{B_\Omega} |a(x, t)|^2 \frac{d\mu(x)dt}{t} \leq [\mu(B)]^{1-2/p}.
\]

We need the notion of points of density: Let F be a closed subset of X whose complement has finite measure. Let γ be a fixed parameter,
0 < \gamma < 1. Then we say that a point \(x \in X \) has \textit{global} \(\gamma \)-density with respect to \(F \) if
\[
\frac{\mu(F \cap B(x, \rho))}{\mu(B(x, \rho))} \geq \gamma
\]
for all balls \(B(x, \rho) \) in \(X \). Observe that if \(F^* \) is the set of points of global \(\gamma \)-density with respect to \(F \); then \(F^* \) is closed, \(F^* \subset F \), and
\[
\{ x \in X : M(\chi_{c^*F})(x) > 1 - \gamma \},
\]
where \(\chi_{c^*F} \) is the characteristic function of the open set \(c^*F \), and \(M \) is the Hardy-Littlewood maximal operator on \(X \).

2. Main result

Lemma 2.1. The Hardy-Littlewood maximal operator \(M \) is of weak type \((1,1)\). More precisely, if \(f \in L^1_{\text{loc}}(d\mu) \), then there is a constant \(C \) so that
\[
\mu(\{ x \in X : M(f)(x) > \lambda \}) \leq C ||f||_1 / \lambda
\]
for all \(\lambda > 0 \).

Lemma 2.2. Assume \(F \) is a closed subset of \(X \). Then there is a constant \(C \) such that
\[
\mu(\c^*F) \leq C \mu(c^*F),
\]
where \(F^\ast \) is the set of points of global \(\gamma \)-density with respect to \(F \).

Proof. Since the Hardy-Littlewood maximal operator \(M \) is of weak type \((1,1)\) by Lemma 1, there is a constant \(C_\gamma \) so that
\[
\mu(\{ x \in X : M(\chi_{c^*F})(x) > 1 - \gamma \}) \leq C_\gamma ||\chi_{c^*F}||_1 / 1 - \gamma.
\]
But the left side of (3) is equal to \(\mu(\c^*F) \) by (2) and so the proof is complete.

Lemma 2.3. There are constants \(C_\gamma \) and \(\gamma \), \(0 < \gamma < 1 \), sufficiently close to 1, so that whenever \(F \) is a closed subset of \(X \) whose complement has finite measure and \(\Phi \) is a nonnegative measurable function defined on \(X \times (0, \infty) \), then
\[
\int_{\cup x \in F^* \Omega_x} \Phi(y, t)^\alpha d\mu(y) dt \leq C_\gamma \int_F \left(\int_{\Omega_x} \Phi(y, t) d\mu(y) dt \right) d\mu(x),
\]
where \(\alpha \) is given as in (1), and \(F^* \) is the set of points of global \(\gamma \)-density with respect to \(F \).
Proof. Observe that Fubini’s theorem gives
\[
\int_F \left(\int_{\Omega_x} \Phi(y, t) d\mu(y) dt \right) d\mu(x) \\
= \int_X \Phi(y, t) \left(\int_F \chi_{B(y,t)}(x) d\mu(x) \right) d\mu(y) dt,
\]
where \(\chi_{B(y,t)} \) is the characteristic function of the ball \(B(y, t) \). Thus it will suffice to show that if
\[
(y, t) \in \bigcup_{x \in F^*} \Omega_x,
\]
then there is a constant \(C_\gamma \) so that
\[
(4) \quad \int_F \chi_{B(y,t)}(x) d\mu(x) \geq C_\gamma t^\alpha.
\]
Let
\[
(y, t) \in \bigcup_{x \in F^*} \Omega_x.
\]
Then there is a point \(x \in F^* \) so that \(d(x, y) < t \). Now it is obvious by geometric observation that
\[
(5) \quad \mu(B(x, t) \cap cB(y, t)) \leq C \mu(B(x, t)),
\]
where \(C < 1 \). However, it is true that
\[
(6) \quad \mu(F \cap B(y, t)) + \mu(B(x, t) \cap cB(y, t)) \\
\geq \mu(F \cap B(x, t) \cap B(y, t)) + \mu(F \cap B(x, t) \cap cB(y, t)) \\
= \mu(F \cap B(x, t)).
\]
By the global \(\gamma \)-density property, we have
\[
(7) \quad \mu(F \cap B(x, t)) \geq \gamma \mu(B(x, t)).
\]
Thus (5), (6) and (7) imply that
\[
\mu(F \cap B(y, t)) \\
\geq \mu(F \cap B(x, t)) - \mu(B(x, t) \cap cB(y, t)) \\
\geq (\gamma - C) \mu(B(x, t)) \\
= C_\gamma \mu(B(x, t)),
\]
and so, if \(\gamma \) is chosen sufficiently close to 1, then we have
\[
\int_F \chi_{B(y,t)}(x) d\mu(x) \geq C_\gamma t^\alpha,
\]
since $\mu(B(x, t)) \approx t^\alpha$. Thus we get (4). The proof is therefore complete.

The next lemma is of the type due to Whitney.

Lemma 2.4. Let O be an open subset of X. Then there are positive constants $A, h_1 > 1, h_2 > 1$ and $h_3 < 1$ which depend only on the space X, and a sequence $\{B(x_i, \rho_i)\}$ of balls such that

(i) $\bigcup_i B(x_i, \rho_i) = O$,
(ii) $B(x_i, h_2 \rho_i) \subset O$ and $B(x_i, h_1 \rho_i) \cap (X \setminus O) \neq \emptyset$,
(iii) the balls $B(x_i, h_3 \rho_i)$ are pairwise disjoint, and
(iv) no point in O lies in more than A of the balls $B(x_i, h_2 \rho_i)$.

As the main result of this paper, the following theorem means that every element of the tent spaces T_{Ω}^p, $0 < p \leq 1$, can be decomposed into elementary particles which are called “atoms.”

Theorem 2.5. Let a function f belong to the tent spaces T_{Ω}^p, $0 < p \leq 1$. Then

$$|f(x, t)| \leq \sum_{j=0}^{\infty} \lambda_j a_j(x, t),$$

where the a_j’s are (Ω, p)-atoms, and the λ_j’s are positive numbers. Moreover,

$$\sum_{j=0}^{\infty} \lambda_j^p \leq C ||S_{\Omega, \alpha}(f)||_{L^p(d\mu)}^{p}$$

for some constant C.

Proof. For each integer k, let O_k be the open set

$$O_k = ^c F_k = \{x \in X : S_{\Omega, \alpha}(f)(x) > 2^k\}.$$

Let $O^*_k = ^c F^*_k$. Then it follows from the notion of global γ-density (with γ sufficiently close to 1) that

$$O^*_k = \{x \in X : M(\chi_{O_k})(x) > 1 - \gamma\}.$$

Observe that for each integer k,

$$O_k \supset O_{k+1},$$

$$O^*_k \supset O_k,$$

and

$$\hat{O}_k \supset \hat{O}_k.$$

Moreover, $\bigcup_{k=-\infty}^{\infty} O^*_k$ contains the support of f in $X \times (0, \infty)$. We distinguish two cases:
Case 1. For every integer k, $O_k^* \neq X$. Let

$$O_k^* = \bigcup_{j=0}^{\infty} B_{k,j}$$

be a Whitney decomposition of the open set O_k^*, where

$$B_{k,j} = B(x_{k,j}, \rho_{k,j}).$$

Let

$$\tilde{B}_{k,j} = B(x_{k,j}, Ch_1 \rho_{k,j}),$$

where h_1 is given in (ii) of Lemma 4, and C will be chosen sufficiently large in a moment. If $(x, t) \in \hat{O}_k^*$, then $B(x, t) \subset O_k^*$, and $x \in B_{k,j}$ for some j. Let

$$y \in B(x_{k,j}, h_1 \rho_{k,j}) \cap (X \setminus O_k^*).$$

Then we have

$$t \leq d(x, y) \leq K(d(x, x_{k,j}) + d(x_{k,j}, y)) \leq K(1 + h_1) \rho_{k,j},$$

where K is the constant in the triangle inequality. Hence if $z \in B(x, t)$, then it follows from (8) that

$$d(x_{k,j}, z) \leq K(d(x_{k,j}, x) + d(x, z)) \leq K(\rho_{k,j} + t) \leq K(\rho_{k,j} + K(1 + h_1) \rho_{k,j}) = K(1 + K(1 + h_1)) \rho_{k,j}.$$

Thus if we choose C so that

$$K(1 + K(1 + h_1)) < Ch_1,$$

then it follows that

$$B(x, t) \subset B(x_{k,j}, Ch_1 \rho_{k,j}),$$

and hence

$$(x, t) \in \overline{\chi_{B_{k,j}}}.$$

Thus we have

$$\hat{O}_k^* \setminus O_{k+1}^* = \bigcup_{j} \Delta_{k,j},$$

where

$$\Delta_{k,j} = \overline{\chi_{B_{k,j}}} \cap (\hat{O}_k^* \setminus O_{k+1}^*).$$
If we let $\chi_{k,j}$ be the characteristic function of the set $\Delta_{k,j}$, then
\[
|f(y,t)| \leq \sum_{k,j} |f(y,t)|\chi_{k,j}(y,t)
\]
\[
= \sum_{k,j} \lambda_{k,j} a_{k,j}(y,t),
\]
where
\[
a_{k,j}(y,t) = \mu(\tilde{B}_{k,j})^{1/2-1/p}|f(y,t)|\chi_{k,j}(y,t) \left(\int_{\Delta_{k,j}} |f(y,t)|^2 \frac{d\mu(y)dt}{t} \right)^{-1/2},
\]
and
\[
\lambda_{k,j} = \mu(\tilde{B}_{k,j})^{-1/2+1/p} \left(\int_{\Delta_{k,j}} |f(y,t)|^2 \frac{d\mu(y)dt}{t} \right)^{1/2}.
\]
Now $a_{k,j}$ is an (Ω, p)-atom associated to the ball $\tilde{B}_{k,j}$ since $|f(y,t)| \leq 2^{k+1}$ in $\Omega \times (0, \infty) \setminus \hat{O}_{k+1}$. Also, put
\[
F = \mathring{c}O_{k+1},
\]
\[
\bigcup_{x \in F^*} \Omega_x = O_{k+1}^*,
\]
\[
F^* = \mathring{c}O_{k+1}^*,
\]
and
\[
\Phi(y,t) = |f(y,t)|^2 \frac{1}{t^{\alpha+1}} \chi_{\tilde{B}_{k,j}}(y,t),
\]
and apply Lemma 3 to get that
\[
\int_{\Delta_{k,j}} |f(y,t)|^2 \frac{d\mu(y)dt}{t} \leq \int_{\tilde{B}_{k,j} \setminus O_{k+1}^*} |f(y,t)|^2 \frac{d\mu(y)dt}{t} \leq \int_{O_{k+1}^*} \chi_{\tilde{B}_{k,j}}(y,t) |f(y,t)|^2 \frac{d\mu(y)dt}{t} \leq C \gamma \int_{O_{k+1}^*} \int_{\Omega_x} |f(y,t)|^2 \frac{d\mu(y)dt}{t^{\sigma+1}} d\mu(x)
\[\leq C_\gamma \int_{\tilde{O}_{k+1} \cap \tilde{B}_{k,j}} (S_{\Omega,a}(f)(x))^2 d\mu(x) \]

\[\leq C_\gamma (2^{k+1})^2 \mu(\tilde{B}_{k,j}). \]

Thus we have

\[\sum_{k,j} \lambda_{k,j}^p = \sum_{k,j} \mu(\tilde{B}_{k,j})^{1-p/2} \left(\int_{\Delta_{k,j}} |f(y,t)|^2 \frac{d\mu(y)dt}{t} \right)^{p/2} \]

\[\leq C \sum_{k,j} 2^{pk} \mu(\tilde{B}_{k,j})^{1-p/2} \mu(\tilde{B}_{k,j})^{p/2} \]

\[\leq C \sum_{k,j} 2^{pk} \mu(B_{k,j}) \] (by the doubling property)

\[\leq C \sum_k 2^{pk} \mu(O_k) \] (by Lemma 4)

\[\leq C \sum_k 2^{pk} \mu(O_k) \] (by Lemma 2)

\[\leq C \|S_{\Omega,a}(f)\|_{L^p(d\mu)}^p. \]

Case 2. \(O_k^* = X \) for some integer \(k \). Since \(\|S_{\Omega,a}(f)\|_{L^p(d\mu)} < \infty \), there is an integer \(n \) so that \(O_k^* = X \) for \(k \leq n \), and \(O_k^* \neq X \) for \(k > n \).

For \(k = n \), let

\[\Delta_n = (X \times (0, \infty)) \setminus O_{n+1}^* \]

\[\lambda_n = \mu(X)^{-1/2+1/p} \left(\int_{\Delta_n} |f(y,t)|^2 \frac{d\mu(y)dt}{t} \right)^{1/2} \]

and

\[a_n(y,t) = \mu(X)^{-1/p+1/2} |f(y,t)| \chi_{\Delta_n}(y,t) \left(\int_{\Delta_n} |f(y,t)|^2 \frac{d\mu(y)dt}{t} \right)^{-1/2}. \]

Then \(a_n \) is an \((\Omega, p) \)-atom since \(|f(y,t)| \leq 2^{n+1} \) in \((X \times (0, \infty)) \setminus O_{n+1}^* \).

For \(k > n \), define \(\chi_{k,j}, \lambda_{k,j}, \) and \(a_{k,j} \) as before. Then we have

\[|f(y,t)| \leq |f(y,t)| \chi_{\Delta_n}(y,t) + \sum_{k>n,j} |f(y,t)| \chi_{k,j}(y,t) \]

\[= \lambda_n a_n(y,t) + \sum_{k>n,j} \lambda_{k,j} a_{k,j}(y,t). \]
Finally we have
\[\lambda_n^p = \mu(X)^{-p/2+1} \left(\int_{\Delta_n} |f(y,t)|^2 \frac{d\mu(y)dt}{t^{p+1}} \right)^{p/2} \]
\[\leq C \mu(X)^{-p/2+1} \left(\int_{O_{n+1}} \int_{\Omega_x} |f(y,t)|^2 \frac{d\mu(y)dt}{t^{p+1}} d\mu(x) \right)^{p/2} \]
\[\leq C \mu(X)^{-p/2+1} \left(\int_{cO_{n+1}} (S_{\Omega,\alpha}(f)(x))^2 d\mu(x) \right)^{p/2} \]
\[\leq C \mu(\Omega) \quad \text{(by Lemma 2)} \]
\[\leq C \|S_{\Omega,\alpha}(f)\|_{L^p(d\mu)}^p \quad \text{(by the Chebycheff’s inequality).} \]

Thus, for \(k > n \), we have as before
\[\sum_{k,j} \lambda_{k,j}^p \leq C \|S_{\Omega,\alpha}(f)\|_{L^p(d\mu)}^p, \]
and the proof is complete. \(\square \)

References

* School of Information and Communications Engineering
 Dongyang University
 Yeongju 750-711, Republic of Korea
 E-mail: cssuh@dyu.ac.kr