DISEASE TRANSMISSION MSEIR MODEL WITH INDIVIDUALS TRAVELING BETWEEN PATCHES i AND $i+1$

S. SEDDIGHI CHAHARBORJ*, M. R. ABU BAKAR AND A. EBADIAN

Abstract. In this article we want to formulate a disease transmission model, MSEIR model, for a population with individuals travelling between patches i and $i+1$ and we derive an explicit formula for the basic reproductive number, R_0, employing the spectral radius of the next generation operator. Also, in this article we show that a system of ordinary differential equations for this model has a unique disease-free equilibrium and it is locally asymptotically stable if $R_0 < 1$ and unstable if $R_0 > 1$.

AMS Mathematics Subject Classification : 92D25.
Key words and phrases : Basic reproductive number, modified reproductive number, disease-free equilibrium, irreducible.

1. Introduction

Mathematical modelling is an important device to analyze and control the speed of infectious diseases increase in a society. In these models there are parameters and other variables of the problem. Mathematical models have important tools in analyzing the spread and control of infectious diseases. The model formulation process clarifies assumptions, variables, and parameters; moreover, models provide conceptual results such as thresholds, basic reproduction numbers, contact numbers, and replacement numbers.

Mathematical models and computer simulations are useful experimental tools for building and testing theories, assessing quantitative conjectures, answering specific questions, determining sensitivities to changes in parameter values, and estimating key parameters from data. Understanding the transmission characteristics of infectious diseases in communities, regions, and countries can lead to better approaches to decrease the transmission of these diseases.
Mathematical models are used in comparing, planning, implementing, evaluating, and optimizing various detection, prevention, therapy, and control programs. Epidemiology modelling can contribute to the design and analysis of epidemiological surveys, suggest crucial data that should be collected, identify trends, make general forecasts, and estimate the uncertainty in forecasts [3, 4]. Compartments with labels such as M, S, E, I, and R are often used for the epidemiological classes as shown in figure 1. The class M contains these infants with passive immunity. After the maternal antibodies disappear from the passive immunity body, the infant moves to the susceptible class S [6].

In figure 1 we see a MSEIR epidemiological model. In this model A is newborns with passive immunity that enter M class, B is newborns without passive immunity that enter S class, αM is the transfer out of the passively immune class, ϵE is the transfer out of the exposed class, γI is the recovery rate from the infectious class, d is the natural death rate and a is the rate of death due to the disease, r is the average number of contacts per unit of time per individual, β is the probability of transmitting the infection per contact. Therefore, $1/\epsilon$ is the mean latent period and $1/\gamma$ is the mean infectious period [6].

\[\frac{dM}{dt} = A - (\alpha + d)M,\]
\[\frac{dS}{dt} = B + \alpha M - (d + \lambda)S,\]
\[\frac{dE}{dt} = \lambda S - (\epsilon + d)E,\]
\[\frac{dI}{dt} = \epsilon E - (d + a + \gamma)I,\]
\[\frac{dR}{dt} = \gamma I - dR,\]

with $\lambda(t) = r \beta \frac{I(t)}{N(t)}$. Where $N(t) = M(t) + S(t) + E(t) + I(t) + R(t)$ is the total population number at time t. The basic reproductive for the MSEIR model is [6],

\[R_0 = \frac{r \beta \epsilon}{(d + a + \gamma)(\epsilon + d)}\]

(Figure 1.)
2. MSEIR Model with \(n \) Patches

In figure 2 we consider an MSEIR epidemic model for transmission of a communicable disease with population travel between \(n \) patches. The number of immunity, susceptible, exposed, infectious and recovered individuals in patch \(i \) at time \(t \), is denoted by \(M_i(t), S_i(t), E_i(t), I_i(t) \) and \(R_i(t) \), respectively. We assume there is population travel between patches \(i \) and \(i+1 \) with different travel rates for each compartment.

The population dynamics for this \(MSEIR \) model is given by the following system of \(5n \) ordinary differential equations with \(i = 1, 2, ..., n \).

\[
\frac{dM_i}{dt} = A_i + m_{i+1,i}M_{i+1} + m_{i-1,i}M_{i-1} - (m_{i,i+1} + \alpha_i + d_i)M_i; 2 \leq i \leq n-1, \\
\frac{dM_n}{dt} = A_n + m_{n-1,n}M_{n-1} - (m_{n,n-1} + \alpha_n + d_n)M_n, \\
\frac{dS_i}{dt} = B_i + \alpha_i M_i + p_{i,i+1,S_{i+1}} + p_{i,i+1,iS_{i+1}} - (p_{i,i+1} + \epsilon_{i,i+1} + \lambda_i)S_i; 2 \leq i \leq n-1, \\
\frac{dS_n}{dt} = B_n + \alpha_n M_n + p_{n-1,n,S_{n-1}} - (p_{n,n-1} + \epsilon_n + \lambda_n)S_n, \\
\frac{dE_i}{dt} = \lambda_i S_i + e_{i+1,i}E_{i+1} + e_{i-1,i}E_{i-1} - (\epsilon_{i,i+1} + \epsilon_{i,i-1} + \epsilon_i + d_i)E_i; 2 \leq i \leq n-1, \\
\frac{dE_n}{dt} = \lambda_n S_n + e_{n-1,n}E_{n-1} - (\epsilon_{n,n-1} + \epsilon_n + d_n)E_n, \\
\frac{dI_i}{dt} = \epsilon_i E_i + q_{i+1,i}I_{i+1} + q_{i-1,i}I_{i-1} - (q_{i,i+1} + q_{i,i-1} + a_i + d_i + \gamma_i)I_i; 2 \leq i \leq n-1, \\
\frac{dI_n}{dt} = \epsilon_n E_n + q_{n-1,n}I_{n-1} - (q_{n,n-1} + a_n + d_n + \gamma_n)I_n, \\
\frac{dR_i}{dt} = \gamma_i I_i + r_{2,1}R_{2} - (r_{1,2} + d_1)R_1,
\]
Here
\[N_i(t) = M_i(t) + S_i(t) + E_i(t) + I_i(t) + R_i(t) \]
is the total population number in patch \(i \) at time \(t \), \(A_i \) is the number of individuals born with passive immunity per unit time, \(B_i \) is the number of individuals born without passive immunity per unit time, \(a_i \) is the rate of death due to the disease in patch \(i \), \(\alpha_i \) is the rate of loss of passive immunity, \(\epsilon_i \) is the rate that exposed individuals become infectious and \(\gamma_i \) is the recovery rate. Thus \(1/d_i \) is the average lifetime and \(1/\epsilon_i \) is the average exposed period. The rate at immunity, susceptible, exposed, infectious and recovered individuals travel from patch \(i \) to patch \(i+1 \) is denoted by \(m_{i,i+1}, p_{i,i+1}, e_{i,i+1}, q_{i,i+1} \) and \(r_{i,i+1} \), respectively and from patch \(i+1 \) to \(i \) is denoted by \(m_{i+1,i}, p_{i+1,i}, e_{i+1,i}, q_{i+1,i} \) and \(r_{i+1,i} \), respectively. It is assumed that all parameters are positive constants except that \(a_i \) can be zero. The total population size in all patches is \(N(t) = \sum_{i=1}^{n} N_i(t) \).
Theorem 1. System (2)-(16) has a unique disease-free equilibrium.
Proof. In disease-free equilibrium of system (2)-(16) all infected variables set zero, namely \(E_i = I_i = 0 \) for \(i = 1, 2, \ldots, n \). Setting \(E_i = I_i = 0 \) for \(i = 1, 2, \ldots, n \) at \(\frac{dR_i}{dt} = 0 \), for \(i = 1, 2, \ldots, n \) gives,

\[
-KR = 0,
\]

with

\[
K = \begin{bmatrix}
 r_{1,2} + d_1 & -r_{2,1} & 0 & 0 & \cdots & 0 \\
 -r_{1,2} & f_2 & -r_{3,2} & 0 & \cdots & 0 \\
 0 & -r_{2,3} & f_3 & -r_{4,3} & \cdots & 0 \\
 \vdots & \vdots & \vdots & \vdots & \cdots & 0 \\
 0 & 0 & 0 & \cdots & -r_{n-1,n} & r_{n,n-1} + d_n
\end{bmatrix}
\]

and

\[
R = [R_1, R_2, \ldots, R_n]^T
\]

where \(f_i = r_{i,i+1} + r_{i,i-1} + d_i \); \(2 \leq i \leq n - 1 \). Since matrix \(K \) is irreducible \cite{1} and so, \(K \) has a positive inverse \cite{1}, thus it can be seen that \(R_i = 0 \) for \(i = 1, 2, \ldots, n \). A disease-free equilibrium for model (2)-(16) is thus given by,

\[
M_i = M^0_i, S_i = S^0_i, E_i = I_i = R_i = 0 \text{ for } i = 1, 2, \ldots, n.
\]

At equilibrium \(\frac{dM_i}{dt} = 0 \), \(\frac{dS_i}{dt} = 0 \) and from (2)-(4), (5)-(7),

\[
M^0 = [M^0_1, M^0_2, \ldots, M^0_n]^T \text{ and } S^0 = [S^0_1, S^0_2, \ldots, S^0_n]^T,
\]

satisfies the linear systems \(C_1 M^0 = A \) with \(A = [A_1, A_2, \ldots, A_n]^T \) and \(C_2 S^0 = B \) with \(B = [B_1 + \alpha_1 M_1, B_2 + \alpha_2 M_2, \ldots, B_n + \alpha_n M_n]^T \) and

\[
C_1 = \begin{bmatrix}
 m_{1,2} + \alpha_1 + d_1 & -m_{2,1} & 0 & 0 & \cdots & 0 \\
 -m_{1,2} & b_2 & -m_{3,2} & 0 & \cdots & 0 \\
 0 & -m_{2,3} & b_3 & -m_{4,3} & \cdots & 0 \\
 \vdots & \vdots & \vdots & \vdots & \cdots & 0 \\
 0 & 0 & 0 & \cdots & -m_{n-1,n} & m_{n,n-1} + d_n
\end{bmatrix}
\]

and

\[
C_2 = \begin{bmatrix}
p_{1,2} + d_1 & -m_{2,1} & 0 & 0 & \cdots & 0 \\
-p_{1,2} & \theta_2 & -p_{3,2} & 0 & \cdots & 0 \\
0 & -p_{2,3} & \theta_3 & -p_{4,3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \cdots & 0 \\
0 & 0 & -p_{n-2,n-1} & \theta_{n-1} & -p_{n,n-1} & 0 \\
0 & 0 & 0 & \cdots & -p_{n-1,n} & p_{n,n-1} + d_n
\end{bmatrix}
\]
Let \(d_i = m_i, i+1 + m_i, i-1 + d_i; \) \(2 \leq i \leq n-1 \) and \(\theta_i = p_i, i+1 + p_i, i-1 + d_i; \) \(2 \leq i \leq n-1. \) Since matrix \(C_1 \) and \(C_2 \) are irreducible [1] and so, \(C_1 \) and \(C_2 \) have positive inverses [1]. Thus there are unique solutions, given by \(M^0 = C_1^{-1}A \) and \(S^0 = C_2^{-1}B. \) This gives the unique disease-free equilibrium.

Theorem 2. Let \(R_0 \) be the basic reproductive number for system (2)-(16), then the disease-free equilibrium of system (2)-(16) is locally asymptotically stable if \(R_0 < 1 \) and unstable if \(R_0 > 1. \)

Proof. We order variables as,
\[
E_1, ..., E_n, I_1, ..., I_n, M_1, ..., M_n, S_1, ..., S_n, R_1, ..., R_n,
\]
and we take the vector of infected variables as, \(v = (E_1, ..., E_n, I_1, ..., I_n). \) The disease-free equilibrium, \(E_0, \) is locally asymptotically stable if all eigenvalues of the Jacobian matrix of system (2)-(16) at \(E_0, \) namely,
\[
J = \begin{bmatrix}
F - V & 0 \\
J_{2,1} & J_{2,2}
\end{bmatrix}
\]
have negative real parts, and unstable if \(J \) has at least one eigenvalue with positive real part. The eigenvalue of \(J \) are the eigenvalues of \(F - V \) and those of \(J_{2,2}. \)
To determine \(F \) and \(V \) we consider \(W \) and \(U, \) where,
\[
W = [r_1 \beta_1 S_1 I_1 N_1^{-1}, r_2 \beta_2 S_2 I_2 N_2^{-1}, ..., r_n \beta_n S_n I_n N_n^{-1}, 0, ..., 0]^T
\]
and
\[
U = \begin{bmatrix}
-e_2, 1 E_2 + (e_1, 2 + e_1 + d_1) E_1 \\
-e_3, 2 E_3 + K_2 E_2 - e_1, 2 E_1 \\
\vdots \\
-e_{n, n-1} E_n + K_{n-1} E_{n-1} - e_{n-2, n-1} E_{n-2} \\
(e_{n, n-1} + e_n + d_n) E_n - e_{n-1, n} E_{n-1} \\
-e_1 E_1 - q_2, 1 I_2 + (q_1, 2 + q_1 + d_1 + \gamma_1) I_1 \\
-e_2 E_2 - q_3, 2 I_3 + Q_2 I_2 - q_1, 2 I_1 \\
\vdots \\
-e_{n-1} E_{n-1} - q_{n, n-1} I_n + Q_{n-1} I_{n-1} - q_{n-2, n-1} I_{n-2} \\
-e_n E_n - q_{n-1, n} I_{n-1} + (q_{n, n-1} + a_n + d_n + \gamma_n) I_n
\end{bmatrix}
\]
where \(K_i = e_i, i+1 + e_i, i-1 + e_i + d_i; 2 \leq i \leq n-1 \), and \(Q_i = q_i, i-1 + q_i, i+1 + q_i + d_i + \gamma_i; 2 \leq i \leq n-1. \) In the disease-free equilibrium linearizing \(W - U, \) gives the \(F - V \) where \(F = \left[\frac{\partial W}{\partial v_i} \right] \) and \(V = \left[\frac{\partial U}{\partial v_i} \right]. \) Therefore, matrices \(F \) and \(V \) are as follows,
\[
F = \begin{bmatrix}
0 & F_{1,2} \\
0 & 0
\end{bmatrix}
\]
and
\[
V = \begin{bmatrix}
V_{1,1} & 0 \\
V_{2,1} & V_{2,2}
\end{bmatrix}
\]
where \(F_{1,2} = \text{diag}(r\beta_1, r\beta_2, ..., r\beta_n) \),

\[
V_{1,1} = \begin{bmatrix}
 k_1 & -e_{2,1} & 0 & 0 & \cdots & 0 \\
 -e_{1,2} & k_2 & -e_{3,2} & 0 & \cdots & 0 \\
 0 & -e_{2,3} & k_3 & -e_{4,3} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
 0 & 0 & 0 & -e_{n-2,n-1} & k_{n-1} & -e_{n,n-1} \\
 0 & 0 & 0 & 0 & -e_{n-1,n} & k_n \\
\end{bmatrix}, \tag{18}
\]

\[
V_{2,2} = \begin{bmatrix}
 l_1 & -q_{2,1} & 0 & 0 & \cdots & 0 \\
 -q_{1,2} & l_2 & -q_{3,2} & 0 & \cdots & 0 \\
 0 & -q_{2,3} & l_3 & -q_{4,3} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
 0 & 0 & 0 & -q_{n-2,n-1} & l_{n-1} & -q_{n,n-1} \\
 0 & 0 & 0 & 0 & -q_{n-1,n} & l_n \\
\end{bmatrix}, \tag{19}
\]

and

\[
V_{2,1} = \text{diag}(\epsilon_1, \epsilon_2, ..., \epsilon_n)
\]

with

\[
k_1 = \epsilon_{1,2} + \epsilon_1 + d_1, \\
k_i = \epsilon_{i,i+1} + \epsilon_{i-1,i} + \epsilon_i + d_i ; \quad 2 \leq i \leq n - 1, \\
k_n = \epsilon_{n,n-1} + \epsilon_n + d_n, \\
l_1 = q_{1,2} + a_1 + d_1 + \gamma_1, \\
l_i = q_{i,i+1} + q_{i-1,i} + a_i + d_i + \gamma_i; \quad 2 \leq i \leq n - 1, \\
l_n = q_{n,n-1} + a_n + d_n + \gamma_n.
\]

Matrices \(V_{1,1} \) and \(V_{2,2} \) are non-singular \(M \)-matrices \([1]\), therefore, have positive inverses. In matrix

\[
J_{2,2} = \begin{bmatrix}
 -C_1 & L \\
 0 & -C_2 \\
\end{bmatrix} \tag{20}
\]

matrices \(C_1 \) and \(C_2 \) are non-singular \(M \)-matrices \([1]\). Thus \(J_{2,2} \) has all eigenvalues with negative real parts. Consequently the local stability of the disease-free equilibrium depends only on eigenvalues of \(F - V \). All eigenvalues of \(F - V \) have negative real parts if only if \(s(F-V) < 0 \) if only if \(\rho(FV^{-1}) < 1 \) \([11]\). Since \(V \) has a positive inverse, then \(FV^{-1} \) is a non-negative matrix. Now, we have,

\[
FV^{-1} = \begin{bmatrix}
 0 & F_{1,2} \\
 0 & 0 \\
\end{bmatrix} \begin{bmatrix}
 V_{1,1}^{-1} & 0 \\
 Y & V_{2,2}^{-1} \\
\end{bmatrix} = \begin{bmatrix}
 F_{1,2}Y & F_{1,2}V_{2,2}^{-1} \\
 0 & 0 \\
\end{bmatrix} \tag{21}
\]

where \(Y = V_{2,2}^{-1}\text{diag}(\epsilon_1, \epsilon_2, ..., \epsilon_n)V_{1,1}^{-1} \). For find the basic reproductive number we use the formula in \([11]\), it follows that,

\[
R_0 = \rho(FV^{-1}) = \rho(\text{diag}(r\beta_1, r\beta_2, ..., r\beta_n)F_{2,2}^{-1}\text{diag}(\epsilon_1, \epsilon_2, ..., \epsilon_n)V_{1,1}^{-1}). \tag{22}
\]
If $R_0 < 1$ then $s(F - V) < 0$, therefore all the eigenvalues lie in the left half plane, so system (2)-(16) is locally asymptotically stable. Similarly if $R_0 > 1$ then $s(F - V) > 0$, thus at least one eigenvalue lies in the right half plane, so system (2)-(16) is unstable.

Theorem 3. If we do not have any travel between patches, then the basic reproductive number in patch i given by,

$$R_{0}^{(i)} = \frac{r\beta_i \epsilon_i}{(\epsilon_i + d_i)(a_i + d_i + \gamma_i)},$$

(23)

Proof. If we don’t have travel between patches, then we have,

$$\frac{dM_i}{dt} = A_i + (\alpha_i + d_i)M_i,$$

(24)

$$\frac{dS_i}{dt} = B_i + \alpha_i M_i - d_i S_i + \lambda_i S_i,$$

(25)

$$\frac{dE_i}{dt} = \lambda_i S_i - (\epsilon_i + d_i)E_i; 1 \leq i \leq n,$$

(26)

$$\frac{dI_i}{dt} = \epsilon_i E_i - (a_i + d_i + \gamma_i)I_i,$$

(27)

$$\frac{dR_i}{dt} = \gamma_i I_i - d_i R_i.$$

(28)

Linearizing system (24)-(28) around disease-free equilibrium gives the Jacobian matrix J^0 as,

$$J^0 = \begin{bmatrix} J_{0,1,1}^0 & J_{0,1,2}^0 \\ 0 & F_i - V_i \end{bmatrix}$$

(29)

where

$$J_{0,1,1}^0 = \begin{bmatrix} \alpha_i + d_i & 0 \\ \epsilon_i & -d_i \end{bmatrix}, \quad J_{0,1,2}^0 = \begin{bmatrix} 0 & 0 \\ 0 & -r\beta_i \end{bmatrix},$$

(30)

$$F_i = \begin{bmatrix} 0 & r\beta_i \\ \epsilon_i & 0 \end{bmatrix}, \quad V_i = \begin{bmatrix} \epsilon_i + d_i & 0 \\ 0 & a_i + d_i + \gamma_i \end{bmatrix}.$$

(31)

The stability of the Jacobian matrix J^0 at the disease-free equilibrium is completely by the stability of $F_i - V_i$. Since, F_i is a non-negative matrix and V_i is a non-singular M-matrix [1], therefore the reproductive number, $R_{0}^{(i)}$, is equal to the spectral radius of the next generation operator $F_i V_i^{-1}$ [11],

$$R_{0}^{(i)} = \rho(F_i V_i^{-1}) = \frac{r\beta_i \epsilon_i}{(\epsilon_i + d_i)(a_i + d_i + \gamma_i)}; 1 \leq i \leq n.$$

(32)
Theorem 4. Suppose in Theorem 3 we have \(\Lambda = \Lambda_i = \lambda_i + \delta_i + \gamma_i, \epsilon_i = \epsilon \) and \(d_i = d \) for each \(i = 1, 2, \ldots, n \), also. Then

\[
\min_{i=1,\ldots,n} R_0^{(i)} \leq R_0 \leq \max_{i=1,\ldots,n} R_0^{(i)}.
\]

Proof. Without loss of generality take \(\beta_1 \leq \beta_2 \leq \ldots \leq \beta_n \), thus we have,

\[
\min_{i=1,\ldots,n} R_0^{(i)} = \frac{r_\beta \epsilon}{(\epsilon + d) \Lambda} \leq \frac{r_\beta \epsilon}{(\epsilon + d) \Lambda} = R_0^{(n)} = \max_{i=1,\ldots,n} R_0^{(i)}.
\]

Let \(V_{1,1}^{-1} = X = [x_{ij}] \) and \(V_{2,2}^{-1} = D = [d_{ij}] \). From (22) we have,

\[
R_0 = \rho(diag(r_\beta_1, r_\beta_2, \ldots, r_\beta_n)Ddiag(\epsilon_1, \epsilon_2, \ldots, \epsilon_n)X).
\]

If we take \(L = diag(r_\beta_1, r_\beta_2, \ldots, r_\beta_n)Ddiag(\epsilon_1, \epsilon_2, \ldots, \epsilon_n)X \), then we have,

\[
L = \begin{bmatrix}
r_\beta_1 \epsilon (d_{11} x_{11} + \ldots + d_{1n} x_{1n}) & \cdots & r_\beta_1 \epsilon (d_{11} x_{11} + \ldots + d_{1n} x_{1n}) \\ \\
\vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots \\ \\
r_\beta_n \epsilon (d_{n1} x_{11} + \ldots + d_{nn} x_{1n}) & \cdots & r_\beta_n \epsilon (d_{n1} x_{11} + \ldots + d_{nn} x_{1n})
\end{bmatrix}.
\]

Let the sum of the entries in the first column of \(L \) denoted by \([\Delta L]_1\) with \(\Delta = (1, 1, \ldots, 1)^T \). Then we have,

\[
[\Delta L]_1 = r_\beta_1 \epsilon (d_{11} x_{11} + \ldots + d_{1n} x_{1n}) + \\
\vdots \\
r_\beta_n \epsilon (d_{n1} x_{11} + \ldots + d_{nn} x_{1n}) \leq r_\beta_n \epsilon \sum_{i=1}^{n} x_{i1} = \frac{r_\beta_n \epsilon}{\Lambda} \sum_{i=1}^{n} x_{i1}.
\]

The last equality follows from the fact that \(\Delta V_{2,2} = \Delta \Lambda, \) thus \(\Delta D = \frac{1}{\epsilon} \Delta \). The column sum of \(V_{1,1} \) is \(\epsilon + d \), thus \(\Delta X = \frac{1}{\epsilon + d} \Delta \). Therefore we have,

\[
[\Delta L]_1 \leq \frac{r_\beta_n \epsilon}{\Lambda(\epsilon + d)} = R_0^{(n)} = \max_{i=1,\ldots,n} R_0^{(i)}.
\]

Similarly we have,

\[
\min_{i=1,\ldots,n} R_0^{(i)} = R_0^{(1)} = \frac{r_\beta_1 \epsilon}{\Lambda(\epsilon + d)} \leq [\Delta L]_1.
\]

For every column of \(L \) these inequalities are true. The spectral radius of a nonnegative matrix lies between its minimum and maximum column sums [1], thus we have,

\[
\min_{i=1,\ldots,n} R_0^{(i)} \leq R_0 = \rho(diag(r_\beta_1, r_\beta_2, \ldots, r_\beta_n)Ddiag(\epsilon_1, \epsilon_2, \ldots, \epsilon_n)X) \leq R_0^{(n)} = \max_{i=1,\ldots,n} R_0^{(i)}.
\]

Corollary 1. If in Theorem 4 we take \(\beta_i = \beta \), then we have,

\[
R_0 = R_0^{(i)}; 1 \leq i \leq n.
\]
Theorem 5. Suppose \(e_{i,i-1} = q_{i,i-1} = 0 \) for each \(i = 2, ..., n \). Then the basic reproductive number, \(R_0 \), for system (2)-(16) given by

\[
R_0 = \max_{i=1,2, ..., n} \left\{ \frac{r_1 \beta_1}{(e_n + d_n)(a_n + d_n + \gamma_n)} \right\}
\]

Proof. First we need to find \(V_{1,1}^{-1} \) and \(V_{2,2}^{-1} \).

\[
V_{1,1}^{-1} = \begin{bmatrix}
\frac{1}{k_1} & 0 & 0 & \cdots & 0 \\
y_{2,1} \frac{1}{k_2} & 0 & 0 & \cdots & 0 \\
y_{3,1} & y_{3,2} & \frac{1}{k_3} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
y_{n-1,1} & y_{n-1,2} & y_{n-1,3} & \cdots & y_{n,n-1} & \frac{1}{k_{n-1}} \\
y_{n,1} & y_{n,2} & y_{n,3} & \cdots & y_{n,n-1} & \frac{1}{k_n}
\end{bmatrix}
\]

and

\[
V_{2,2}^{-1} = \begin{bmatrix}
\frac{1}{l_1} & 0 & 0 & \cdots & 0 \\
z_{2,1} \frac{1}{l_2} & 0 & 0 & \cdots & 0 \\
z_{3,1} & z_{3,2} & \frac{1}{l_3} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
z_{n-1,1} & z_{n-1,2} & z_{n-1,3} & \cdots & z_{n,n-1} & \frac{1}{l_{n-1}} \\
z_{n,1} & z_{n,2} & z_{n,3} & \cdots & z_{n,n-1} & \frac{1}{l_n}
\end{bmatrix}
\]

with

\[
y_{i,j} = -\frac{\prod_{k=j}^{i-1} \epsilon_{k,k+1}}{\prod_{k=j}^{i-1} l_k} \quad \text{and} \quad z_{i,j} = -\frac{\prod_{k=j}^{i-1} \epsilon_{k,k+1}}{\prod_{k=j}^{i-1} l_k} \quad \text{for} \quad 2 \leq i \leq n \quad \text{and} \quad 1 \leq j \leq i - 1.
\]

Now, for find reproductive number we can use formula (22),

\[
R_0 = \rho(FV^{-1}) = \rho(diag(r_1 \beta_1, r_2 \beta_2, ..., r_n \beta_n)V_{2,2}^{-1} diag(\epsilon_1, \epsilon_2, ..., \epsilon_n)V_{1,1}^{-1}) = \rho(H)
\]

with

\[
H = \begin{bmatrix}
r_1 \beta_1 & 0 & 0 & \cdots & 0 \\
r_2 \beta_2 & 0 & 0 & \cdots & 0 \\
r_3 \beta_3 & 0 & \cdots & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
r_{n-1} \beta_{n-1} & 0 & \cdots & \cdots & \cdots \\
r_n \beta_n & 0 & \cdots & \cdots & \cdots
\end{bmatrix}
\]

Therefore, we have,

\[
R_0 = \max_{i=1,2, ..., n} \left\{ \frac{r_i \beta_i}{(e_n + d_n)(a_n + d_n + \gamma_n)} \right\}
\]
Corollary 2. If we suppose \(e_{i,i-1} = q_{i,i-1} = 0 \) for each \(i = 2, ..., n \). Then the modified reproductive number, \(R_0^{(i)} \), for system (2)-(16) in patch \(i \) given by,

\[
R_0^{(i)} = \frac{r_i \beta_i}{(e_{i,i+1} + e_i + d_i)(q_{i,i+1} + a_i + d_i + \gamma_i)} (i = 1, 2, ..., n - 1), \tag{51}
\]

\[
\hat{R}_0^{(i)} = R_0^{(n)} = \frac{r_i \beta_n e_n}{(e_n + d_n)(a_n + d_n + \gamma_n)}. \tag{52}
\]

Corollary 3. Let in system (2)-(16), \(e_{i,i+1} = e_{i,i} = q_{i,i+1} = q_{i,i} = 0 \) for \(i = 1, 2, ..., n \) then \(V_{1,1} = \text{diag}(\epsilon_1 + d_1, ..., \epsilon_n + d_n) \) and \(V_{2,2} = \text{diag}(k_1, ..., k_n) \). In this case, the matrix

\[
F_{1,2} V_{2,2}^{-1} \text{diag}(\epsilon_1, ..., \epsilon_n) V_{1,1}^{-1}
\]

is diagonal, therefore we have,

\[
R_0 = \max_{i=1, ..., n} R_0^{(i)} = \max_{i=1, ..., n} \frac{r_i \beta_i \epsilon_i}{k_i (\epsilon_i + d_i)}.
\tag{53}
\]

Example 1. In Figure 3 to explain formula (22), we use the following model parameters,

\[
A_1 = 300, A_2 = 250, A_3 = 150, A_4 = 200, B_1 = 500, B_2 = 400, B_3 = 200, B_4 = 300, M_1(0) = 800, M_2(0) = 700, M_3(0) = 600, M_4(0) = 500, S_1(0) = 2400, S_2(0) = 1200, S_3(0) = 1500, S_4(0) = 2000, I_1(0) = 50, I_2(0) = 40, I_3(0) = 30, I_4(0) = 20, E_1(0) = E_2(0) = E_3(0) = E_4(0) = R_1(0) = R_2(0) = R_3(0) = R_4(0) = 0, r = 100, d_1 = 0.005, d_2 = 0.004, d_3 = 0.003, d_4 = 0.002, \alpha_1 = 0.04, \alpha_2 = 0.05, \alpha_3 = 0.02, \alpha_4 = 0.01, \epsilon_1 = 0.08, \epsilon_2 = 0.06, \epsilon_3 = 0.04, \epsilon_4 = 0.02, \gamma_1 = 0.08, \gamma_2 = 0.01, \gamma_3 = 0.06, \gamma_4 = 0.05, a_1 = 0.6, a_2 = 0.8, a_3 = 0.7, a_4 = 0.5, m_{12} = 0.03, m_{21} = 0.008, m_{32} = 0.02, m_{32} = 0.006, m_{34} = 0.01, m_{43} = 0.03, p_{12} = 0.02, p_{21} = 0.005, p_{23} = 0.01, p_{32} = 0.01, p_{43} = 0.005, c_{12} = 0.01, c_{21} = 0.001, c_{23} = 0.02, c_{32} = 0.01, c_{34} = 0.03, c_{43} = 0.005, q_{12} = 0.04, q_{21} = 0.03, q_{23} = 0.02, q_{32} = 0.02, q_{34} = 0.04, q_{43} = 0.01, r_{12} = 0.04, r_{21} = 0.02, r_{23} = 0.02, r_{32} = 0.01, r_{34} = 0.03, r_{43} = 0.07.
\]

and \(\beta_1 = 0.016, \beta_2 = 0.02, \beta_3 = 0.012, \beta_4 = 0.02, \) for \(R_0 > 1 \) and \(\beta_1 = 0.007, \beta_2 = 0.008, \beta_3 = 0.009, \beta_4 = 0.005 \), for \(R_0 < 1 \).

Example 2. If in Example 1 we take,

\[
e_{2,3} = e_{3,2} = e_{4,3} = e_{4,3} = q_{2,3} = q_{3,2} = q_{4,3} = q = 0,
\]

then,

\[
V_{1,1} = \begin{bmatrix} V_{1,1}^{1,1} & 0 \\ 0 & V_{1,1}^{2,2} \end{bmatrix} \text{ and } V_{2,2} = \begin{bmatrix} V_{2,2}^{1,1} & 0 \\ 0 & V_{2,2}^{1,1} \end{bmatrix}
\tag{54}
\]
Now, we use where,
\[
V_{1,1}^{1,1} = \begin{bmatrix} k_1 & -e_{1,2} & k_2 \\ -e_{1,2} & k_2 & -e_{2,1} \\ k_2 & -e_{2,1} & k_1 \end{bmatrix}, \quad V_{2,2}^{1,1} = \begin{bmatrix} k_3 & 0 \\ 0 & k_4 \end{bmatrix},
\]
(55)
with
\[
V_{1,1}^{2,2} = \begin{bmatrix} l_1 & -q_{1,2} & l_2 \\ -q_{1,2} & l_2 & -q_{2,1} \\ l_2 & -q_{2,1} & l_1 \end{bmatrix}, \quad V_{2,2}^{2,2} = \begin{bmatrix} l_3 & 0 \\ 0 & l_4 \end{bmatrix}.
\]
(56)
Therefore,
\[
R_0 = \rho(\text{diag}(r_{\beta_1}, r_{\beta_2}, r_{\beta_3}, r_{\beta_4})V_{2,2}^{-1}\text{diag}(e_1, e_2, e_3, e_4)V_{1,1}^{-1})
\]
(57)
\[
= \rho(\text{diag}(r_{\beta_1}, r_{\beta_2})(V_{2,2}^{1,1})^{-1}\text{diag}(e_1, e_2)(V_{1,1}^{1,1})^{-1})
\]
(58)
\[
= \rho(\text{diag}(r_{\beta_3}, r_{\beta_4})(V_{2,2}^{2,2})^{-1}\text{diag}(e_3, e_4)(V_{1,1}^{2,2})^{-1})
\]
(59)
\[
= \max\{R_0^{(1,2)}, R_0^{(3,4)}\} = \max\{\tilde{R}_0^{(1,2)}, R_0^{(3)}, R_0^{(4)}\}.
\]
(60)
where,
\[
\begin{align*}
R_0^{(3)} &= \frac{r_{\beta_3}e_3}{k_3}, & R_0^{(4)} &= \frac{r_{\beta_4}e_4}{k_4} \quad \text{and} \quad \tilde{R}_0^{(1,2)} &= \rho(Q)
\end{align*}
\]
(61)
with
\[
Q = \begin{bmatrix} \frac{(r_{\beta_1}k_2)(e_1l_2)+(r_{\beta_2}e_2,1)(e_2q_{1,2})}{(k_2-e_{1,2}e_{2,1})(l_1l_2-q_{1,2}q_{2,1})} & \frac{(r_{\beta_1}k_2)(e_1q_{2,1})+(r_{\beta_2}e_2,1)(e_2l_1)}{(k_2-e_{1,2}e_{2,1})(l_1l_2-q_{1,2}q_{2,1})} \\
\frac{(r_{\beta_2}e_1,2)(e_1l_2)+(r_{\beta_3}k_1)(e_2q_{1,2})}{(k_2-e_{1,2}e_{2,1})(l_1l_2-q_{1,2}q_{2,1})} & \frac{(r_{\beta_2}e_1,2)(e_1q_{2,1})+(r_{\beta_3}k_1)(e_2l_1)}{(k_2-e_{1,2}e_{2,1})(l_1l_2-q_{1,2}q_{2,1})} \end{bmatrix}.
\]
(62)
Now, we use
\[
\beta_1 = 0.017, \beta_2 = 0.018, \beta_3 = 0.019, \beta_4 = 0.005, \text{ for } R_0 > 1, \tilde{R}_0^{(1,2)} > 1, R_0^{(3)} > 1, R_0^{(4)} < 1 \text{ and } \beta_1 = 0.007, \beta_2 = 0.008, \beta_3 = 0.007, \beta_4 = 0.015, \text{ for } R_0 > 1, \tilde{R}_0^{(1,2)} < 1, R_0^{(3)} < 1, R_0^{(4)} > 1 \text{ (Figure 4).}
\]
If in Example 6 we take, we have to travel between \(R_1 \), \(R_0 \) (1), \(R_3 \), \(R_0 \) (3), \(R_4 \), \(R_0 \) (2), which mean we do not have to travel between \(I_i, I_{i+1} \) and \(E_i, E_{i+1} \). Then we have,

\[
R_0 = \max_{i=1,2,3,4} \frac{r \beta_i \epsilon_i}{(\epsilon_i + d_i)(a_i + d_i + \gamma_i)}.
\]

Now, we use, \(\beta_1 = 0.007, \beta_2 = 0.008, \beta_3 = 0.017, \beta_4 = 0.015 \), for \(R_0^{(1)}, R_0^{(2)} < 1, R_0^{(3)}, R_0^{(4)} > 1, R_0 > 1 \) and \(\beta_1 = 0.0082, \beta_2 = 0.0082, \beta_3 = 0.0081, \beta_4 = 0.006 \) for \(R_0^{(1)}, R_0^{(2)}, R_0^{(3)}, R_0^{(4)}, R_0 < 1 \) (Figure 5).

Example 4. If in Example 3 we take, \(\epsilon_{1,2} = q_{1,2} = 0 \), which mean we do not have to travel between \(I_i, I_{i+1} \) and \(E_i, E_{i+1} \). Then we have,

\[
R_0 = \max_{i=1,2,3,4} \frac{r \beta \epsilon_i}{(\epsilon_i + d_i)(a_i + d_i + \gamma_i)}.
\]

Now, we use, \(\beta_1 = 0.014, \beta_2 = 0.012, \beta_3 = 0.014, \beta_4 = 0.012 \), for \(R_0^{(i)} > 1(i = 1,2,3,4), R_0 > 1 \) and \(\beta_1 = 0.007, \beta_2 = 0.007, \beta_3 = 0.008, \beta_4 = 0.006 \), for \(R_0^{(1)}, R_0^{(4)}, R_0^{(2)}, R_0^{(3)}, R_0 < 1 \) (Figure 6).
Example 5. Suppose that we do not have to travel between patches and we used,
\(\beta_1 = 0.017, \beta_2 = 0.006, \beta_3 = 0.014, \beta_4 = 0.004, d_1 = 0.005, d_2 = 0.004, d_3 = 0.003, d_4 = 0.002, a_1 = 0.6, a_2 = 0.8, a_3 = 0.7, a_4 = 0.5 \) for Figure 7.(a) and
\(\beta_1 = 0.036, \beta_2 = 0.042, \beta_3 = 0.026, \beta_4 = 0.036, d_1 = 0.5, d_2 = 0.4, d_3 = 0.3, d_4 = 0.2, a_1 = a_2 = a_3 = a_4 = 0 \) for Figure 7.(b).
One of the fundamental questions of mathematical epidemiology is to find threshold conditions that determine whether an infectious disease will spread in a susceptible population when the disease is introduced into the population. The threshold conditions are characterized by the so called reproductive number or contact number, commonly denoted by R_0 in mathematical epidemiology [9, 8, 10]. The reproductive number plays an important role in understanding transmission dynamics of epidemics and predicting spread of epidemics. In this article first we formulate a heterogeneous model, then we used the spectral radius of the next generation operator of infection [2, 5, 7], in finding a formula for the reproductive number, R_0, thus if $R_0 < 1$ the modelled disease dies out and if $R_0 > 1$ the disease spreads in the population. As an instance in in Example 1 we see that for $R_0 < 1$ the disease dies out (Figure 3.(b)) and for $R_0 > 1$ the disease spreads in the population (Figure 3.(b)).

References

Sarkhosh Seddighi was born in 1977 in Chaharborj of West Azarbaijan, Iran. From 1983 to 1994 he attended primary and middle schools in Chaharborj and Miandoab. In September 1995, he went to Tabriz University in Tabriz to study mathematics where he received his Bachelor’s degree in mathematics in 1999. He obtained his Master degree in pure mathematics (C*-Algebra) in 2001 from Shiraz University. After this, he became a researcher at Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran and lecturer at Azad University. Now, he is Ph.D student (End semester) at University Putra Malaysia.

Mohd Rizam Abu Bakar is Associate Professor in the Department of Mathematics at University Putra Malaysia. He obtained his M.S. in Applied Mathematics from North Carolina State University, USA and PhD in Applied Statics from University of Bradford, UK. He has published widely in the area of Applied Mathematics, disease transmission models and survival data analysis.

Alli Ebadian is Associate Professor in the Department of Mathematics at Urmia University. He obtained his PhD in Pure Mathematics from Tabriz University. He has published widely in the area of Pure and Applied Mathematics.