DOI QR코드

DOI QR Code

Methods to Improve Light Harvesting Efficiency in Dye-Sensitized Solar Cells

  • Park, Nam-Gyu (School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University)
  • Received : 2010.11.15
  • Accepted : 2010.12.03
  • Published : 2010.12.30

Abstract

Methodologies to improve photovoltaic performance of dye-sensitized solar cell (DSSC) are reviewed. DSSC is usually composed of a dye-adsorbed $TiO_2$ photoanode, a tri-iodide/iodide redox electrolyte and a Pt counter electrode. Among the photovoltaic parameters of short-circuit photocurrent density, open-circuit voltage and fill factor, short-circuit photocurrent density is the collective measure of light harvesting, charge separation and charge collection efficiencies. Internal quantum efficiency is known to reach almost 100%, which indicates that charge separation occurs without loss by recombination. Thus, light harvesting efficiency plays an important role in improvement of photocurrent. In this paper, technologies to improve light harvesting efficiency, including surface area improvement by nano-dispersion, size-dependent light scattering efficiency, bi-functional nano material, panchromatic absorption by selective positioning of three different dyes and transparent conductive oxide (TCO)-less DSSC, are introduced.

Keywords

Acknowledgement

Supported by : NRF, KETEP

References

  1. E. Becquerel, Compt. Rend. 9, 561 (1839).
  2. R. Williams, J. Chem. Phys. 32, 1505 (1960). https://doi.org/10.1063/1.1730950
  3. B. O'Regan and M. Gratzel, Nature 353, 737 (1991). https://doi.org/10.1038/353737a0
  4. M. Gratzel, Inorg. Chem. 44, 6841 (2005). https://doi.org/10.1021/ic0508371
  5. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide and L. Han, Jpn. J. Appl. Phys. Part 2 45, L638 (2006). https://doi.org/10.1143/JJAP.45.L638
  6. H.-J. Koo, Y.J. Kim, Y.H. Lee, W.I. Lee, K. Kim and N.-G. Park, Adv. Mater. 20, 195, (2008). https://doi.org/10.1002/adma.200700840
  7. N.-G. Park and K. Kim, Phys. Stat. Sol., 205, 1895 (2008). https://doi.org/10.1002/pssa.200778938
  8. M.A. Green, K. Emery, Y. Hishikawa and W. Warta, Prog. Photovolt: Res. Appl. 18, 346 (2010).
  9. J. van de Lagemaat, N.-G. Park and A.J. Frank, J. Phys. Chem. B 104, 2044 (2000). https://doi.org/10.1021/jp993172v
  10. D. Cahen, G. Hodes, M. Gratzel, J.F. Guillemoles and I. Riess, J. Phys. Chem. B 104, 2053 (2000). https://doi.org/10.1021/jp993187t
  11. G.-W. Lee, S.-Y. Bang, C. Lee, W.-M. Kim, D. Kim, K. Kim and N.-G. Park, Curr. Appl. Phys. 9, 900 (2009). https://doi.org/10.1016/j.cap.2008.09.002
  12. S. Ito, T. Kitamura, Y. Wada and S. Yanagida, Sol. Energy Mater. Sol. Cells 76, 3 (2003). https://doi.org/10.1016/S0927-0248(02)00209-X
  13. J. Nissfolk, K. Fredin, A. Hagfeldt and G. Boschloo, J. Phys. Chem. B 110, 17715 (2006). https://doi.org/10.1021/jp064046b
  14. S. Ito, S.M. Zakeerudiin, R. Humphry-Baker, P. Liska, P. Charvet, P. Comte, M.K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida and M. Gratzel, Adv. Mater. 18, 1202 (2006). https://doi.org/10.1002/adma.200502540
  15. S. Hore, C. Vetter, R. Kern, H. Smit and A. Hinsch, Sol. Energy Mater. Sol. Cells 90, 1176 (2006). https://doi.org/10.1016/j.solmat.2005.07.002
  16. A. Usami, Chem. Phys. Lett. 277, 105 (1997). https://doi.org/10.1016/S0009-2614(97)00878-6
  17. A. Usami, Sol. Energy Mater. Sol. Cells 64, 73 (2000). https://doi.org/10.1016/S0927-0248(00)00049-0
  18. J. Ferber and J. Luther, Sol. Energy Mater. Sol. Cells 54, 265 (1998). https://doi.org/10.1016/S0927-0248(98)00078-6
  19. A. Usami, Sol. Energy Mater. Sol. Cells 59, 163 (1999). https://doi.org/10.1016/S0927-0248(99)00068-9
  20. W.E. Vargas and G.A. Niklasson, Sol. Energy Mater. Sol. Cells 69, 147 (2001). https://doi.org/10.1016/S0927-0248(00)00388-3
  21. H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim and N.-G. Park, Inorg. Chim. Acta 361, 677 (2008). https://doi.org/10.1016/j.ica.2007.05.017
  22. K. Lee, S.W. Park, M.J. Ko, K. Kim and N.-G. Park, Nature Mater. 8, 665 (2009). https://doi.org/10.1038/nmat2475
  23. J.M. Kroon, N.J. Bakker, H.J.P. Smit, P. Liska, K.R. Thampi, P. Wang, S.M. Zakeeruddin, M. Gratzel, A. Hinsch, S. Hore, U. Wurfel, R. Sastrawan, J.R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien and G.E. Tulloch, Prog. Photovolt. Res. Appl. 15, 1 (2007). https://doi.org/10.1002/pip.707
  24. N. Fuke, A. Fukui, Y. Chiba, R. Komiya, R. Yamanaka and L. Han, Jpn. J. Appl. Phys. 46, L420 (2007). https://doi.org/10.1143/JJAP.46.L420
  25. Y. Kashiwa, Y. Yoshida and S. Hayase, Appl. Phys. Lett. 92, 033308 (2008). https://doi.org/10.1063/1.2837633
  26. N. Fuke, A. Fukui, R. Komiya, A. Islam, Y. Chiba, M. Yanagida, R. Yamanaka and L. Han, Chem. Mater. 20, 4974 (2008). https://doi.org/10.1021/cm800797v
  27. B. Yoo, K.-J. Kim, D.-K. Lee, K. Kim, M.J. Ko, Y.H. Kim, W.M. Kim and N.-G. Park, Optics Express, 18, A395 (2010).

Cited by

  1. A new method for improving the performance of dye sensitized solar cell using macro-porous silicon as photoanode vol.22, pp.6, 2015, https://doi.org/10.1007/s10934-015-0045-3
  2. Tri-iodide reduction activity of ultra-small size PtFe nanoparticles supported nitrogen-doped graphene as counter electrode for dye-sensitized solar cell vol.488, 2017, https://doi.org/10.1016/j.jcis.2016.11.011
  3. An Overview Of Nanonet Based Dye-Sensitized Solar Cell (DSSC) In Solar Cloth vol.13, pp.6, 2013, https://doi.org/10.5573/JSTS.2013.13.6.635
  4. Wavelength conversion effect-assisted dye-sensitized solar cells for enhanced solar light harvesting vol.4, pp.30, 2016, https://doi.org/10.1039/C6TA04526J
  5. Integrated tandem dye solar cells vol.3, pp.43, 2013, https://doi.org/10.1039/c3ra43380c
  6. D–π–A Dyes with an Intramolecular B–N Coordination Bond as a Key Scaffold for Electronic Structural Tuning and Their Application in Dye-Sensitized Solar Cells vol.90, pp.4, 2017, https://doi.org/10.1246/bcsj.20160421
  7. Dye mixture promoted light harvesting for organic dye-sensitized solar cells using triphenylamine dyes with various numbers of anchoring groups vol.30, 2016, https://doi.org/10.1016/j.orgel.2015.11.040
  8. Efficiency of 10 % for quasi-solid state dye-sensitized solar cells under low light irradiance vol.45, pp.4, 2015, https://doi.org/10.1007/s10800-015-0788-1
  9. Influence of Particle Size of TiO2 Powder on the Energy Conversion Efficiency of a Dye-Sensitized Solar Cell vol.650, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.650.39