DOI QR코드

DOI QR Code

Evaluation of Multi-microbial Probiotics Produced by Submerged Liquid and Solid Substrate Fermentation Methods in Broilers

  • Shim, Y.H. (Department of Animal Resources Science, College of Animal Life Science, Kangwon National University) ;
  • Shinde, P.L. (Department of Animal Resources Science, College of Animal Life Science, Kangwon National University) ;
  • Choi, J.Y. (Department of Animal Resources Science, College of Animal Life Science, Kangwon National University) ;
  • Kim, J.S. (Department of Animal Resources Science, College of Animal Life Science, Kangwon National University) ;
  • Seo, D.K. (Department of Animal Products and Food Science, College of Animal Life Science, Kangwon National University) ;
  • Pak, J.I. (Department of Animal Products and Food Science, College of Animal Life Science, Kangwon National University) ;
  • Chae, B.J. (Department of Animal Resources Science, College of Animal Life Science, Kangwon National University) ;
  • Kwon, I.K. (Department of Animal Products and Food Science, College of Animal Life Science, Kangwon National University)
  • Received : 2009.08.24
  • Accepted : 2009.11.12
  • Published : 2010.04.01

Abstract

Two experiments were conducted to evaluate multi-microbe submerged liquid (SLF) and solid substrate (SSF) fermented probiotic products in broilers. The SLF and SSF probiotics were comprised of Lactobacillus acidophilus ($1.1{\times}10^9$ and $4{\times}10^8$ cfu/g), Bacillus subtilis ($1.1{\times}10^9$ and $4{\times}10^9$ cfu/g), Saccharomyces cerevisiae ($1.5{\times}10^7$ and $1.0{\times}10^4$ cfu/g) and Aspergillus oryzae ($2.6{\times}10^7$ and $4.3{\times}10^7$ cfu/g), respectively. In Exp. 1, 640 day-old Ross chicks were allotted to 4 treatments, each comprising 4 replicates (40 chicks/replicate). The basal diet was prepared without any antimicrobials (negative control, NC), and 20 mg/kg avilamycin (positive control, PC), 0.3% SLF and 0.3% SSF probiotics were added to the basal diets as treatments. Birds fed PC and SSF diets showed improved (p<0.001) overall weight gain and F/G than birds fed NC and SLF diets; whereas, birds fed SLF diet had better weight gain and F/G than birds fed NC diet. Retention of CP was higher (p<0.05) in birds fed the SSF diet than birds fed PC, SLF and NC diets. Birds fed the SLF diet tended to have higher (p<0.10) cecal total anaerobic bacteria than birds fed PC and NC diets; whereas, lesser cecal coliforms were noticed in birds fed PC, SLF and SSF diets than birds fed the NC diet. In Exp. 2, 640 day-old Ross chicks were randomly allotted to 4 treatments in a $2{\times}2$ factorial arrangement. Each treatment had 4 replicates (40 chicks/replicate). Two different multi-microbe probiotic products (0.3% SLF or SSF) each with two different antibiotics (10 mg/kg colistin, or 20 mg/kg avilamycin) were used as dietary treatments. Birds fed the SSF diet had greater weight gain (p<0.001), better F/G (p<0.05), greater retention of energy (p<0.001) and protein (p<0.05), and lesser cecal Clostridium (d 35) than birds fed SLF diet. Birds fed the colistin-supplemented diet had less (p<0.01) cecal coliforms when compared with birds fed the avilamycin diet. Additionally, birds fed the avilamycin diet had greater energy retention (p<0.05) than birds fed the colistin diet. Thus, the results of this study suggest the multi-microbe probiotic product prepared by a solid substrate fermentation method to be superior to the probiotic product prepared by submerged liquid fermentation; moreover, feeding of probiotics with different antibiotics did not elicit any interaction effect between probiotic and antibiotic.

Keywords

Broilers;Multi-microbial Probiotics;Fermentation Methods;Performance;Nutrient Retention;Cecal Microflora

Acknowledgement

Supported by : RDA

References

  1. AOAC. 1990. Official Method of Analysis. 15th edn. Association of Official Analytical Chemists, Arlington, VA
  2. Badu, K. R. and T. Satyanarayana. 1995. α-Amylase production by thermophilic Bacillus coagulans in solid state fermentation. Process Biochem. 30:305-309 https://doi.org/10.1016/0032-9592(95)87038-5
  3. Dibner, J. J. and J. D. Richards. 2005. Antibiotic growth promoters in agriculture: history and mode of action. Poult. Sci. 84:634-643
  4. Ferket, P. R. 2004. Alternatives to antibiotics in poultry production: responses, practical experience and recommendations. In: Nutritional biotechnology in the feed and food industries (Ed. T.P. Lyons and K.A. Jacques)
  5. Nottingham University Press, Nottingham. pp. 57-67. Fuller, R. 1989. Probiotics in man and animals - a review. J. Appl. Bacterol. 66:365-378 https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  6. Kabir, S. M. L., M. M. Rahman, M. B. Rahman, M. M. Rahman and S. U. Ahmed. 2004. The dynamics of probiotics on growth performance and immune response in broilers. Int. J. Poult. Sci. 3:361-364 https://doi.org/10.3923/ijps.2004.361.364
  7. Line, E. J., S. J. Bailey, N. A. Cox, N. J. Stern and T. Tompkins. 1998. Effect of yeast-supplemented feed on Salmonella and Campylobacter populations in broilers. Poult. Sci. 77:405-410
  8. Mitchell, D. A. and B. K. Lonsane. 1992. Definition characteristics and potential. In: Solid substrate cultivation (Ed. H. W. Doelle, D. A. Mitchell and C. E. Rolz). Elsevier, London. pp. 1-16
  9. Mountzouris, K. C., P. Tsirtsikos, E. Kalamara, S. Nitsch, G. Schatzmayr and K. Fegeros. 2007. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult. Sci. 86:309-317
  10. Owings, W. J., D. L. Reynolds, R. J. Hasiak and P. R. Ferket. 1990. Influence of a dietary supplementation with Streptococcus faecium M-74 on broiler body weight, feed conversion, carcass characteristics and intestinal microbial colonization. Poult. Sci. 69:1257-1264 https://doi.org/10.3382/ps.0691257
  11. Tannock, G. W. 2001. Molecular assessment of intestinal microflora. Am. J. Clin. Nutr. 73:410-414
  12. El-bendary, M. A. 2006. Bacillus thuringiensis and Bacillus sphaericus biopesticides production. J. Basic Microbiol. 46:158-170 https://doi.org/10.1002/jobm.200510585
  13. Graminha, E. B. N., A. Z. L. Goncalves, R. D. P. B. Pirota, M. A. A. Balsalobre, R. Da Silva and E. Gomes. 2008. Enzyme production by solid-state fermentation: application to animal nutrition. Anim. Feed Sci. Technol. 144:1-22 https://doi.org/10.1016/j.anifeedsci.2007.09.029
  14. Moore, S. 1963. On the determination of cystine as cysteric acid. J. Biol. Sci. 238:235
  15. Barrow, P. A. 1992. Probiotics for chickens. In: Probiotics: The Scientific Basis (Ed. R. Fuller). Chapman and Hall, London. pp. 225-257
  16. Ohh, S. H., P. L. Shinde, Z. Jin, J. Y. Choi, T.-W. Hahn, H. T. Lim, G. Y. Kim, Y. Park, K.-S. Hahm and B. J. Chae. 2009. Potato (Solanum tuberosum L. cv. Gogu valley) protein as an antimicrobial agent in the diets of broilers. Poult. Sci. 88:1227-1234 https://doi.org/10.3382/ps.2008-00491
  17. Choi, J. Y., P. L. Shinde, I. K. Kwon, Y. H. Song and B. J. Chae. 2009. Effect of wood vinegar on the performance, nutrient digestibility and intestinal microflora in weanling pigs. Asian- Aust. J. Anim. Sci. 22:267-274
  18. Nousiainen, J. and J. Setala. 1993. Lactic acid bacteria as animal probiotics. In: Lactic acid bacteria (Ed. S. Salminen and A. won Wright). Marcel Dekker, New York. pp. 315-356
  19. Sanders, M. E. and J. H. Veld. 1999. Bringing a probiotic containing functional food to the market: microbiological, product, regulatory and labeling issues. Antonie van Leeuwenhoek 76: 93-315
  20. Stavric, S. and E. T. Kornegay. 1995. Microbial probiotic for pigs and poultry. In: Biotechnology in animal feeds and animal feeding (Ed. R. J. Wallace and A. Chesson). VCH, Weinheim, pp. 205-231 https://doi.org/10.1002/9783527615353.ch10
  21. Denev, S. A. 2006. Effect of different growth promoters on the cecal microflora and performance of broiler chickens. Bulg. J. Agric. Sci. 12:461-474
  22. National Research Council. 1994. Nutrient Requirements of Poultry. 9th Ed. National Academy Press, Washington, DC
  23. Pascual, M., M. Hugas, J. I. Badiola, J. M. Monfort and M. Garriga. 1999. Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Appl. Environ. Microbiol. 65:4981-4986
  24. Fenton, T. W. and M. Fenton. 1979. An improved method for chromic oxide determination in feed and feces. Can. J. Anim. Sci. 59:631-634 https://doi.org/10.4141/cjas79-081
  25. Raimbault, M. 1998. General and micorbiological aspects of solid substrate fermentation. Electron. J. Biotechnol. 1(3):1-15
  26. Battan, B., J. Sharma and R. C. Kuhad. 2006. High-level xylanase production by alkaliphilic Bacillus pumilus ASH under solidstate fermentation. World J. Microbiol. Biotechnol. 22:1281-1287 https://doi.org/10.1007/s11274-006-9173-x
  27. Jin, L. Z., Y. W. Ho, N. Abdullah and S. Jalaudin. 1997. Probiotics in poultry: modes of action. World's Poult. Sci. J. 53:351-368 https://doi.org/10.1079/WPS19970028
  28. Patel, H. M., R. Wang, O. Chandrashekar, S. S. Pandiella and C. Webb. 2004. Proliferation of Lactobacillus plantarum in solidstate fermentation of oats. Biotechnol. Prog. 20:110-116 https://doi.org/10.1021/bp034176r
  29. Chen, K.-L., W.-L. Kho, S.-H. You, R.-H. Yeh, S.-W. Tang and C.-W. Hsieh. 2009. Effects of Bacillus subtilis var. natto and Saccharomyces cerevisiae mixed fermented feed on the enhanced growth performance of broilers. Poult. Sci. 88:309-315 https://doi.org/10.3382/ps.2008-00224
  30. SAS. 1996. SAS/STAT. User's Guide: Statistics (Release 6.12 Ed.). SAS Inst. Inc., Cary. NC
  31. Ziv, G. 1981. Clinical pharmacology of polymyxins. J. Am. Vet. Med. Assoc. 179:711-715
  32. Lu, M. Y., I. S. Maddox and J. D. Brooks. 1998. Application of a multi-layer packed bed reactor to citric acid production in solid state fermentation using Aspergillus niger. Process Biochem. 33:117-123 https://doi.org/10.1016/S0032-9592(97)00037-X
  33. Timmerman, H. M., C. J. M. Koningb, L. Mulderc, F. M. Romboutsd and A. C. Beynen. 2004. Monostrain, multistrain and multispecies probiotics: A comparison of functionality and efficacy. Int. J. Food Microbiol. 96:219-233 https://doi.org/10.1016/j.ijfoodmicro.2004.05.012
  34. Wellenreiter, R. H., D. H. Mowrey, L. A. Stobbs and J. A. D'assonville. 2000: Effects of avilamycin on performance of broiler chickens. Vet. Ther. 1(2):118-124
  35. Hu, J., W. Lu, C. Wang, R. Zhu and J. Qiao. 2008. Characteristics of solid-state fermented feed and its effects on performance and nutrient digestibility in growing-finishing pigs. Asian-Aust. J. Anim. Sci. 21:1635-1641
  36. Robinson, T., D. Singh and P. Nigam. 2001. Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl. Microbiol. Biotechnol. 55:284-289 https://doi.org/10.1007/s002530000565
  37. Weitnauer, G., A. Muhlenweg, A. Trefzer, D. Hoffmeister, R. D. Sussmuth, G. Jung, K. Welzel, A. Vente, U. Girreser and A. Bechthold. 2001. Biosynthesis of the orthosomycin antibiotic avilamycin A: deductions from the molecular analysis of the avi biosynthetic gene cluster of Streptomyces viridochromogenes Tu57 and production of new antibiotics. Chem. Biol. 8:569-581 https://doi.org/10.1016/S1074-5521(01)00040-0
  38. Jernigan, M. A., R. D. Miles and A. S. Arafa. 1985. Probiotics in poultry nutrition - a review. World's Poult. Sci. J. 41:99-107 https://doi.org/10.1079/WPS19850008
  39. Ross, R. P., C. Desmond, G. F. Fitzgerald and C. Stanton. 2005. Overcoming the technological hurdles in the development of probiotic foods. J. Appl. Microbiol. 98:1410-1417 https://doi.org/10.1111/j.1365-2672.2005.02654.x
  40. Cavazzoni, V., A. Adami and C. Castrovilli. 1998. Performance of broiler chicken supplemented with Bacillus coagilans as probiotic. Br. Poult. Sci. 39:526-529 https://doi.org/10.1080/00071669888719
  41. Pollman, D. S., D. M. Danielson and E. R. Peo. 1980. Effects of microbial feed additives on performance of starter and growing-finishing pigs. J. Anim. Sci. 51:577-581

Cited by

  1. Effect of supplementation of multi-microbe probiotic product on growth performance, apparent digestibility, cecal microbiota and small intestinal morphology of broilers vol.96, pp.4, 2011, https://doi.org/10.1111/j.1439-0396.2011.01187.x
  2. A multi-microbe probiotic formulation processed at low and high drying temperatures: effects on growth performance, nutrient retention and caecal microbiology of broilers vol.53, pp.4, 2012, https://doi.org/10.1080/00071668.2012.690508
  3. Effects of Origins of Soybean Meal on Growth Performance, Nutrient Digestibility and Fecal Microflora of Growing Pigs vol.55, pp.4, 2013, https://doi.org/10.5187/JAST.2013.55.4.263
  4. by-products fermented with multistrain probiotics on growth performance, immunity, caecal microbiology and meat oxidative stability in broilers vol.55, pp.4, 2014, https://doi.org/10.1080/00071668.2014.938021
  5. ) vol.48, pp.6, 2016, https://doi.org/10.1111/are.13099
  6. Probiotic level effects on growth performance, carcass traits, blood parameters, cecal microbiota, and immune response of broilers vol.88, pp.2, 2016, https://doi.org/10.1590/0001-3765201620150071
  7. Bacteriophage cocktail and multi-strain probiotics in the feed for weanling pigs: effects on intestine morphology and targeted intestinal coliforms and Clostridium vol.11, pp.01, 2017, https://doi.org/10.1017/S1751731116001166
  8. Safety assessment of antibiotic and probiotic feed additives for Gallus gallus domesticus vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-12866-7
  9. Effect of potential multimicrobe probiotic product processed by high drying temperature and antibiotic on performance of weanling pigs1 vol.89, pp.6, 2011, https://doi.org/10.2527/jas.2009-2794
  10. Improved Production of Spores and Bioactive Metabolites from Bacillus amyloliquefaciens in Solid-state Fermentation by a Rapid Optimization Process pp.1867-1314, 2018, https://doi.org/10.1007/s12602-018-9474-z
  11. The effects of dietary supplementation with different levels of Microzist as newly developed probiotics on growth performance, carcass characteristics, and immunological organs of broiler chicks vol.46, pp.1, 2018, https://doi.org/10.1080/09712119.2018.1467835
  12. Effect of dietary probiotics on the semen traits and antioxidative activity of male broiler breeders vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-24345-8