DOI QR코드

DOI QR Code

Mouse phenogenomics, toolbox for functional annotation of human genome

  • Kim, Il-Yong (Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, Institute for Veterinary Science, College ofVeterinary Medicine, Seoul National University) ;
  • Shin, Jae-Hoon (Interdisciplinary Program for Bioinformatics, Seoul National University) ;
  • Seong, Je-Kyung (Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, Institute for Veterinary Science, College ofVeterinary Medicine, Seoul National University)
  • Published : 2010.02.28

Abstract

Mouse models are crucial for the functional annotation of human genome. Gene modification techniques including gene targeting and gene trap in mouse have provided powerful tools in the form of genetically engineered mice (GEM) for understanding the molecular pathogenesis of human diseases. Several international consortium and programs are under way to deliver mutations in every gene in mouse genome. The information from studying these GEM can be shared through international collaboration. However, there are many limitations in utility because not all human genes are knocked out in mouse and they are not yet phenotypically characterized by standardized ways which is required for sharing and evaluating data from GEM. The recent improvement in mouse genetics has now moved the bottleneck in mouse functional genomics from the production of GEM to the systematic mouse phenotype analysis of GEM. Enhanced, reproducible and comprehensive mouse phenotype analysis has thus emerged as a prerequisite for effectively engaging the phenotyping bottleneck. In this review, current information on systematic mouse phenotype analysis and an issue-oriented perspective will be provided.

References

  1. Oliver, P. L., Bitoun, E. and Davies, K. E. (2007) Comparative genetic analysis: the utility of mouse genetic systems for studying human monogenic disease. Mamm. Genome 18, 412-424 https://doi.org/10.1007/s00335-007-9014-8
  2. Cutler, G., Marshall, L. A., Chin, N., Baribault, H. and Kassner, P. D. (2007) Significant gene content variation characterizes the genomes of inbred mouse strains. Genome Res. 17, 1743-1754 https://doi.org/10.1101/gr.6754607
  3. Collins, F. S., Rossant, J. and Wurst, W. (2007) A mouse for all reasons. Cell 128, 9-13 https://doi.org/10.1016/j.cell.2006.12.018
  4. Moore, K. J. (1999) Utilization of mouse models in the discovery of human disease genes. Drug. Discov. Today 4, 123-128 https://doi.org/10.1016/S1359-6446(99)01304-5
  5. Capecchi, M. R. (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet. 6, 507-512
  6. Crow, J. F. (1990) Anecdotal, historical and critical commentaries on genetics. R. A. Fisher, a centennial view. Genetics 124, 207-211
  7. Paigen, K. (2003) One hundred years of mouse genetics: an intellectual history. I. The classical period (1902-1980). Genetics 163, 1-7
  8. Rader, K. (2004) Making mice: Standardizing animals for American biomedical research, 1900-1955, 1st ed., Princeton University Press, Princeton, NJ
  9. Cutler, G., Marshall, L. A., Chin, N., Baribault, H. and Kassner, P. D. (2007) Significant gene content variation characterizes the genomes of inbred mouse strains. Genome Res. 17, 1743-1754 https://doi.org/10.1101/gr.6754607
  10. Goios, A., Pereira, L., Bogue, M., Macaulay, V. and Amorim, A. (2007) mtDNA phylogeny and evolution of laboratory mouse strains. Genome Res. 17, 293-298 https://doi.org/10.1101/gr.5941007
  11. Yoshiki, A. and Moriwaki, K. (2006) Mouse phenome research: implications of genetic background. ILAR. J. 47, 94-102 https://doi.org/10.1093/ilar.47.2.94
  12. Little, C. C. and Tyzzer, E. E. (1916) Further experimental studies on the inheritance of susceptibility to a transplantable carcinoma (JA) of the Japanese waltzing mouse. J. Med. Res. 33, 393-427
  13. Snell., G. D. (1948) Methods for the study of histocompatibility genes. J. Genet. 49, 87-108 https://doi.org/10.1007/BF02986826
  14. Grubb, S. C., Churchill, G. A. and Bogue, M. A. (2004) A collaborative database of inbred mouse strain characteristics. Bioinformatics 20, 2857-2859 https://doi.org/10.1093/bioinformatics/bth299
  15. Coleman, D. (1978) Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14, 141-148 https://doi.org/10.1007/BF00429772
  16. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L. and Friedman, J. M. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425-432 https://doi.org/10.1038/372425a0
  17. Tartaglia, L. A., Dembski, M., Weng, X., Deng, N., Culpepper, J., Devos, R., Richards, G. J., Campfield, L. A., Clark, F. T., Deeds, J., Muir, C., Sanker, S., Moriarty, A., Moore, K. J., Smutko, J. S., Mays, G. G., Wool, E. A., Monroe, C. A. and Tepper, R. I. (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263-1271 https://doi.org/10.1016/0092-8674(95)90151-5
  18. Cuenot, L. (1902) Notes et revues. Arch. Zool. Exp. Gen. xxvii
  19. Soewarto, D., Klaften, M. and Rubio-Aliaga, I. (2009) Features and strategies of ENU mouse mutagenesis. Curr. Pharm. Biotechnol. 10, 198-213 https://doi.org/10.2174/138920109787315079
  20. Waterson, R. H., Lindblad-Toh, K., Birney, E., Rogers, J. and Abril, J. F. (2002) Mouse genome sequencing consortium. Nature 420, 520-562 https://doi.org/10.1038/nature01262
  21. Hummel, K. P., Coleman, D. L., and Lane, P. W. (1972) The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL-KsJ and C57BL-6J strains. Biochem. Genet. 7, 1-13 https://doi.org/10.1007/BF00487005
  22. Manis, J. P. (2007) Knock out, knock in, knock down-genetically manipulated mice and the Nobel Prize. N. Engl. J. Med. 357, 2426-2429 https://doi.org/10.1056/NEJMp0707712
  23. Ray, M. K., Fagan, S. P. and Brunicardi, F. C. (2000) The cre-loxP system: a versatiletool for targeting genes in a cell- and stage-specific manner. Cell Transplant 9, 805-815 https://doi.org/10.1177/096368970000900607
  24. Furth, P. A., Onge, L., St. Boger, H., Gruss, P., Gossen, M., Kistner, A., Bujard, H. and Henninghausen, L. (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. U.S.A. 91, 9302-9306 https://doi.org/10.1073/pnas.91.20.9302
  25. Kistner, A., Gossen, M., Zimmerman, F., Jerecic, J., Ullmer, C., Lubbert, H. and Bujard, H. (1996) Doxycyclinemediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 93, 10933-10938 https://doi.org/10.1073/pnas.93.20.10933
  26. No, D., Yao, T. P. and Evans, R. M. (1996) Ecdysone-inducible gene expression in mammalian-cells and transgenic mice. Proc. Natl. Acad. Sci. U.S.A .93, 3346-3351 https://doi.org/10.1073/pnas.93.8.3346
  27. Rosenthal, N. and Brown, S. (2007) The mouse ascending: perspectives for human-disease models. Nat. Cell. Biol. 9, 993-999 https://doi.org/10.1038/ncb437
  28. Sung, Y. H., Song, J. and Lee, H. W. (2004) Functional genomics approach using Mice. JBMB. 31, 122-132
  29. Rossant, J. and McKerlie, C. (2001) Mouse-based phenogenomics for modelling human disease. Trends. Mol. Med. 7, 502-507 https://doi.org/10.1016/S1471-4914(01)02164-5
  30. Michaud, E. J., Culiat, C. T., Klebig, M. L., Barker, P. E., Cain, K. T., Carpenter, D. J., Easter, L. L., Foster, C. M., Gardner, A. W. and Guo, Z. Y. (2005) Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice. BMC Genomics 6, 164 https://doi.org/10.1186/1471-2164-6-164
  31. Abuin, A., Hansen, G. M. and Zambrowicz, B. (2007) Gene trap mutagenesis. Handb. Exp. Pharmacol. 178, 129-147 https://doi.org/10.1007/978-3-540-35109-2_6
  32. Gondo, Y. (2008) Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nat. Rev. Genet. 9, 803-810 https://doi.org/10.1038/nrg2431
  33. Perkins, A. S. (2002) Functional genomics in the mouse. Funct. Integr. Genomics. 2, 81-91 https://doi.org/10.1007/s10142-002-0049-3
  34. Acevedo-Arozena, A., Wells, S., Potter, P., Kelly, M., Cox, R.D. and Brown, S. D. (2008) ENU mutagenesis, a way forward to understand gene function. Annu. Rev. Genomics Hum. Genet. 9, 49-69 https://doi.org/10.1146/annurev.genom.9.081307.164224
  35. Nolan, P. M., Peters, J., Strivens, M., Rogers, D., Hagan, J., Spurr, N., Gray, I. C., Vizor, L., Brooker, D. and Whitehill, E. (2000) A systematic, genome-wide, phenotypedriven mutagenesis programme for gene function studies in the mouse. Nat. Genet. 25, 440-443 https://doi.org/10.1038/78140
  36. Hacking, D. F. (2008) 'Knock, and it shall be opened': knocking out and knocking in to reveal mechanisms of disease and novel therapies. Early Hum. Dev. 84, 821-827 https://doi.org/10.1016/j.earlhumdev.2008.09.011
  37. Sieberts, S. K. and Schadt, E. E. (2007) Moving toward a system genetics view of disease. Mamm. Genome 18, 389-401 https://doi.org/10.1007/s00335-007-9040-6
  38. Argmann, C. A., Chambon, P. and Auwerx, J. (2005) Mouse phenogenomics: the fast track to 'systems metabolism'. Cell Metab. 2, 349-360 https://doi.org/10.1016/j.cmet.2005.11.002
  39. Brown, S. D., Hancock, J. M. and Gates, H. (2006) Understanding mammalian genetic systems: the challenge of phenotyping in the mouse. PLoS. Genet. 2, 1131-1137 https://doi.org/10.1371/journal.pgen.0020118
  40. Peters, L. L., Robledo, R. F., Bult, C. J., Churchill, G. A., Paigen, B. J. and Svenson, K. L. (2007) The mouse as a model for human biology: a resource guide for complex trait analysis. Nat. Rev. Genet. 8, 58-69 https://doi.org/10.1038/nrg2025
  41. Justice, M. J. (2008) Removing the cloak of invisibility: phenotyping the mouse. Dis. Model. Mech. 1, 109-112 https://doi.org/10.1242/dmm.001057
  42. Mason, K. D., Carpinelli, M. R., Fletcher, J. I., Collinge, J. E., Hilton, A. A., Ellis, S., Kelly, P. N., Ekert, P. G., Metcalf, D., Roberts, A. W., Huang, D. C. and Kile, B. T. (2007). Programmed anuclear cell death delimits platelet life span. Cell 128, 1173-1186 https://doi.org/10.1016/j.cell.2007.01.037
  43. Barbaric, I., Miller, G., and Dear, T. N. (2007) Appearances can be deceiving: phenotypes of knockout mice. Brief. Funct. Genomic. Proteomic. 6, 91-103 https://doi.org/10.1093/bfgp/elm008
  44. Yu, Q., Shen, Y., Chatterjee, B., Siegfried, B. H., Leatherbury, L., Rosenthal, J., Lucas, J. F., Wessels, A., Spurney, C. F., Wu, Y. J., Kirby, M. L., Svenson, K., and Lo, C. W. (2004). ENU induced mutations causing congenital cardiovascular anomalies. Development 131, 6211-6223 https://doi.org/10.1242/dev.01543
  45. Brayton, C., Justice, M. and Montgomery, C. A. (2001) Evaluating mutant mice: anatomic pathology. Vet. Pathol. 38, 1-19 https://doi.org/10.1354/vp.38-1-1
  46. Gailus-Durner, V., Fuchs, H., Becker, L., Bolle, I., Brielmeier, M., Calzada-Wack, J., Elvert, R., Ehrhardt, N., Dalke, C., Franz, T. J., Grundner-Culemann, E., Hammelbacher, S., Holter, S. M., Holzlwimmer, G., Horsch, M., Javaheri, A., Kalaydjiev, S. V., Klempt, M., Kling, E., Kunder, S., Lengger, C., Lisse, T., Mijalski, T., Naton, B., Pedersen, V., Prehn, C., Przemeck, G., Racz, I., Reinhard, C., Reitmeir, P., Schneider, I., Schrewe, A., Steinkamp, R., Zybill, C., Adamski, J., Beckers, J., Behrendt, H., Favor, J., Graw, J., Heldmaier, G., Höfler, H., Ivandic, B., Katus, H., Kirchhof, P., Klingenspor, M., Klopstock, T., Lengeling, A., Müller, W., Ohl, F., Ollert, M., Quintanilla-Martinez, L., Schmidt, J., Schulz, H., Wolf, E., Wurst, W., Zimmer, A., Busch, D. H. and de Angelis, M. H. (2005) Introducing the German Mouse Clinic: open access platform for standardized phenotyping. Nat. Methods. 2, 403-404 https://doi.org/10.1038/nmeth0605-403
  47. Green, E. C., Gkoutos, G. V., Lad, H. V., Blake, A., Weekes, J. and Hancock, J. M. (2005) EMPReSS: European mouse phenotyping resource for standardized screens. Bioinformatics. 21, 2930-2931 https://doi.org/10.1093/bioinformatics/bti441
  48. Brown, S. D., Chambon, P. and de Angelis, M. H. (2005) EMPReSS: standardized phenotype screens for functional annotation of the mouse genome. Nat. Genet. 37, 1155 https://doi.org/10.1038/ng1105-1155
  49. Mallon, A. M., Blake, A. and Hancock, J. M. (2008) EuroPhenome and EMPReSS: online mouse phenotyping resource. Nucleic Acids Res. 36, D715-718 https://doi.org/10.1093/nar/gkm728
  50. Strivens, M. and Eppig, J. T. (2004) Visualizing the laboratory mouse: capturing phenotype information. Genetica 122, 89-97 https://doi.org/10.1007/s10709-004-1435-7
  51. Willmann, J. K., van Bruggen, N., Dinkelborg, L. M. and Gambhir, S. S. (2008) Molecular imaging in drug development. Nat. Rev. Drug. Discov. 7, 591-607 https://doi.org/10.1038/nrd2290
  52. Pearson, H. (2002) Surviving a knockout blow. Nature 415, 8-9 https://doi.org/10.1038/415008a
  53. Champy, M. F., Selloum, M., Piard, L., Zeitler, V., Caradec, C., Chambon, P. and Auwerx, J. (2004) Mouse functional genomics requires standardization of mouse handling and housing conditions. Mamm. Genome 15, 768-783 https://doi.org/10.1007/s00335-004-2393-1
  54. Austin, C. P., Battey, J. F., Bradley, A., Bucan, M., Capecchi, M., Collins, F. S., Dove, W. F., Duyk, G., Dymecki, S. and Eppig, J. T. (2004) The knockout mouse project. Nat. Genet. 36, 921-924 https://doi.org/10.1038/ng0904-921
  55. Auwerx, J., Avner, P., Baldock, R., Ballabio, A., Balling, R., Barbacid, M., Berns, A., Bradley, A., Brown, S. and Carmeliet, P. (2004) The European dimension for the mouse genome mutagenesis program. Nat. Genet. 36, 925-927 https://doi.org/10.1038/ng0904-925
  56. Friedel, R. H., Seisenberger, C., Kaloff, C. and Wurst, W. (2007) EUCOMM--the European conditional mouse mutagenesis program. Brief. Funct. Genomic. Proteomic. 6, 180-185 https://doi.org/10.1093/bfgp/elm022
  57. Collins, F. S., Finnell, R. H., Rossant, J. and Wurst, W. (2007) A new partner for the international knockout mouse consortium. Cell 129, 235 https://doi.org/10.1016/j.cell.2007.04.007
  58. FIMRe Board of Directors (2006) FIMRe: Federation of International Mouse Resources: Global networking of resource centers. Mamm. Genome 17, 363-364 https://doi.org/10.1007/s00335-006-0001-2
  59. Hagn, M., Marschall, S. and Hrabè de Angelis, M. (2007) EMMA--the European mouse mutant archive. Brief. Funct. Genomic. Proteomic. 6, 186-192 https://doi.org/10.1093/bfgp/elm018
  60. Yoshiki, A., Ike, F., Mekada, K., Kitaura, Y., Nakata, H., Hiraiwa, N., Mochida, K., Ijuin, M., Kadota, M., Murakami, A., Ogura, A., Abe, K., Moriwaki, K. and Obata, Y. (2009) The mouse resources at the RIKEN BioResource center. Exp. Anim. 58, 85-96 https://doi.org/10.1538/expanim.58.85
  61. Wakana, S., Suzuki, T., Furuse, T., Kobayashi, K., Miura, I., Kaneda, H., Yamada, I., Motegi, H., Toki, H., Inoue, M., Minowa, O., Noda, T., Waki, K., Tanaka, N., Masuya, H. and Obata, Y. (2009) Introduction to the Japan Mouse Clinic at the RIKEN BioResource Center. Exp. Anim. 58, 443-450 https://doi.org/10.1538/expanim.58.443
  62. Hancock, J. M., Adams, N.C., Aidinis, V., Blake, A., Bogue, M., Brown, S. D., Chesler, E. J., Davidson, D., Duran, C. and Eppig, J. T. (2007) Mouse Phenotype Database Integration Consortium: integration [corrected] of mouse phenome data resources. Mamm. Genome 18, 157-163 https://doi.org/10.1007/s00335-007-9004-x
  63. Adams, D. J., Biggs, P. J., Cox, T., Davies, R., van der Weyden, L., Jonkers, J., Smith, J., Plumb, B., Taylor, R., Nishijima, I., Yu, Y., Rogers, J. and Bradley, A. (2004) Mutagenic insertion and chromosome engineering resource (MICER). Nat. Genet. 36, 867-871 https://doi.org/10.1038/ng1388
  64. Dennis, M. B. (2002) Welfare issues of genetically modified animals. ILAR. Journal 43, 100-109 https://doi.org/10.1093/ilar.43.2.100
  65. Zambrowicz, B. P. and Sands, A. T. (2003) Knockouts model the 100 best-selling drugs--will they model the next 100? Nat. Rev. Drug. Discov. 2, 38-51 https://doi.org/10.1038/nrd987
  66. Heck, S., Qian, X. and Velleca, M. (2004) Genetically engineered mouse models for drug discovery: new chemical genetic approaches. Curr. Drug. Discov. Technol. 1, 13-26 https://doi.org/10.2174/1570163043484806
  67. Sharpless, N. E., and Depinho, R. A. (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug. Discov. 5, 741-754 https://doi.org/10.1038/nrd2110
  68. Kelly-Spratt, K. S., Kasarda, A. E., Igra, M. and Kemp, C. J. (2008) A mouse model repository for cancer biomarker discovery. J. Proteome. Res. 7, 3613-3618 https://doi.org/10.1021/pr800210b
  69. Gulezian, D., Jacobson-Kram, D., McCullough, C. B., Olson, H., Recio, L., Robinson, D., Storer, R., Tennant, R., Ward, J. M. and Neumann, D. A. (2000) Use of transgenic animals for carcinogenicity testing: considerations and implications for risk assessment. Toxicol. Pathol. 28, 482-499 https://doi.org/10.1177/019262330002800320
  70. Bos, J. L. (1989). Ras oncogenes in human cancer: a review. Cancer. Res. 49, 4682-4689
  71. You, M., Candrian, U., Maranpot, R. and Anderson, M. (1989). Activation of the K-ras protooncogenes in spontaneously occurring and chemically induced lung tumors of the strain A mouse. Proc. Natl. Acad. Sci. U.S.A. 86, 3070- 3074 https://doi.org/10.1073/pnas.86.9.3070
  72. Leder, A., Kuo, A., Cardiff, R. D., Sinn, E. and Leder, P. (1990). v-Ha-ras transgene abrogates the initiation step in mouse skin tumorigenesis: Effects of phorbol esters and retinoic acid. Proc. Natl. Acad. Sci. U.S.A. 87, 9178-9182 https://doi.org/10.1073/pnas.87.23.9178
  73. Janssen, K. P., Abal, M., El Marjou, F., Louvard, D. and Robine, S. (2005) Mouse models of K-ras-initiated carcinogenesis. Biochim. Biophys. Acta. 1756, 145-154
  74. Attardi, L. D. and Donehower, L. A. (2005) Probing p53 biological functions through the use of genetically engineered mouse models. Mutat. Res. 576, 4-21 https://doi.org/10.1016/j.mrfmmm.2004.08.022
  75. Tennant, R. W., French, J. E. and Spalding, J. W. (1995). Identifying chemical carcinogens and assessing potential risk in short-term bioassays using transgenic mouse models. Environ Health Perspect 103, 942-950 https://doi.org/10.2307/3432740
  76. de Vries, A., van Oostrom, C. T. M., Hofhius, F. M. A., Dortant, P. M., Berg, F. J. W., de Gruijl. F. R., Wester, P. W., van Kreijl, C. F., Capel, P. J A., van Steeg, H. and Verbeek, S. J. (1995). Increased susceptibility to ultraviolet- B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 377, 169-173 https://doi.org/10.1038/377169a0

Cited by

  1. Internet and Print Resources to Facilitate Pathology Analysis When Phenotyping Genetically Engineered Rodents vol.49, pp.1, 2012, https://doi.org/10.1177/0300985811415709
  2. Optical Coherence Tomography for live imaging of mammalian development vol.21, pp.5, 2011, https://doi.org/10.1016/j.gde.2011.09.004
  3. 1H NMR-based metabolomic study on resistance to diet-induced obesity in AHNAK knock-out mice vol.403, pp.3-4, 2010, https://doi.org/10.1016/j.bbrc.2010.11.048
  4. Optical coherence tomography for live phenotypic analysis of embryonic ocular structures in mouse models vol.17, pp.8, 2012, https://doi.org/10.1117/1.JBO.17.8.081410
  5. 3-Dimensional Imaging Modalities for Phenotyping Genetically Engineered Mice vol.49, pp.1, 2012, https://doi.org/10.1177/0300985811429814
  6. Mouse genetics: Catalogue and scissors vol.45, pp.12, 2012, https://doi.org/10.5483/BMBRep.2012.45.12.242
  7. Identification of the responsible proteins for increased selenium bioavailability in the brain of transgenic rats overexpressing selenoprotein M vol.34, pp.6, 2014, https://doi.org/10.3892/ijmm.2014.1945
  8. Optical coherence tomography for high-resolution imaging of mouse development in utero vol.16, pp.4, 2011, https://doi.org/10.1117/1.3560300
  9. Hairy and Enhancer of Split 6 (Hes6) Deficiency in Mouse Impairs Neuroblast Differentiation in Dentate Gyrus Without Affecting Cell Proliferation and Integration into Mature Neurons vol.36, pp.1, 2016, https://doi.org/10.1007/s10571-015-0220-8
  10. Ensuring reproducibility and ethics in animal experiments reporting in Korea using the ARRIVE guideline vol.34, pp.1, 2018, https://doi.org/10.5625/lar.2018.34.1.11